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This note describes integral representations obtained for a class of 
nonlinear functionals and nonlinear transformations on the spaces 
L?(T) (1 SpS °°) associated with an arbitrary cr-finite measure space 
(7\ 2, /x). The class of functionals considered here differs from those 
considered in [l], [3], [7], [8], [9] and its study is mainly motivated 
by its close connection with nonlinear integral equations [ó]. 

In the study of nonlinear integral equations there is a fundamental 
class of nonlinear transformations, called Urysohn operators [ó], 
taking measurable functions to measurable functions and having the 
form 

(1) (Ax)(s) = f <l>(s;x(t),t)dt 

where 5, Tare Lebesgue measurable subsets of Rn and <j>: SXRX T—>R 
is a real valued function which is measurable on S XT for each fixed 
value of its second argument and continuous on R for almost all argu­
ments in SXT. An important subclass of (1) consists of those 
Urysohn operators whose range is in C(S) where S is compact. This 
subclass includes the case in which the kernel </> is independent of its 
first argument, so that the operator reduces to a real valued func­
tional: 

(2) F(x) - f *(*('), 0*. 
J 2» 

Functionals of the form (2) also play an important role in the theory 
of generalized random processes in probability [5]. 
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Our main result gives an abstract characterization, for all c-finite 
measure spaces T=(T, 2 , AO and all compact Hausdorff spaces, of 
nonlinear transformations A: Lp(T)-+C(S)t l^p^<*>, which have 
the form (1). In particular we characterize functionals on LP(T) 
having the form (2). This latter characterization extends earlier 
results [7], [8] involving functionals of the form 

(3) F(*) = f *(*(*))** 

defined on (essentially) nonatomic cr-finite measure spaces. Detailed 
proofs and related results will be given elsewhere. 

Hereafter T=(T, 2 , n) will denote a (r-finite measure space and 
M(T) will denote the class of real valued measurable functions on T. 

DEFINITION. A real valued function 0: RXT-+R is said to be of 
Caratheodory type for J", denoted 0£Car(!T), if it satisfies 

(i) $(• , t): R—>R is continuous for almost all /GT, 
(ii) <f>(c, •) : T—*R is measurable for all c£ i? . 
Since for each simple function x, the function <j> o x defined by 

(<t> ox)(i) =<f>(x(t), t) is in M(T), it follows by taking limits of se­
quences of simple functions and using (i) that for every x£;M(T), 
<t> o x is also in M(T). 

DEFINITION. Given a number p, 1 Spè °°, a function <££Car(r) 
is said to be in the Caratheodory p-class for Tt denoted 0£Carp(jT), if 
it satisfies 

4>oxELl(T) ÎOTXEL»(T). 

[For the case of a finite nonatomic T it is known [6, p. 27] that </> is in 
Car*(r), 1 £p < oo, if and only if 

| *(*, /) | ^ a(t) + b | x \* for some a G L\T).] 

THEOREM. Let T— (7\ 2 , /*) be a finite measure space. Let F be a real 
valued functional on LP(T), 1 ^p ^ oo, which satisfies 

(i) F(x+y) — F(x) — F(y) = const. = ci? whenever xy = 0 a.e., 
(ii) F is uniformly continuous relative to L00 worm on each bounded 

subset of L~(T), 
(iii) F is continuous relative to Lp normt if p< <*>, and is continuous 

with respect to bounded a.e. convergence, if p= oo. 
Then there exists a function 0 £ C a r p ( r ) such that 

(*) F(x) = -cF+[<t>oxdfi for * £ L*(T). 
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Moreover 0 can be taken to satisfy 
(a) 0(0, ' ) = 0 a . e . 
and is then unique up to sets of the form RXN with N a null set in T. 

Conversely, for every 0 £ C a r p ( r ) satisfying (a), and for every cFÇzR, 
(*) defines afunctional satisfying (i), (ii) and (iii). 

The above result extends to cr-finite measure spaces. For p = oo it 
remains valid as is. For p < oo it is valid if the phrase 'bounded subset 
of L0 0(^) , is replaced by 'bounded subset of L°°(T) which is supported 
by a set of finite measure.' 

The proof occurs in two parts. First we consider the case £ = oo. 
The observation that Fi = F-\-CF is a functional of the same type with 
CFX — 0 permits a reduction to the case cp = 0. The construction of 0 
from F now depends on the fact that for each real number h the set 
function Vh defined by 

vh(E) = F(hXE), 

where xs denotes the characteristic function of E £ 2 , is by (i) and 
(iii) a ^-continuous measure on T. Hence by the Radon-Nikodym 
theorem there exists for each h a density 0^ = 0 (h, •) corresponding 
to Vh. The proof that the family {0&|A£i?} defines a function 
0£Car°° ( r ) is a generalization of the classical proof of existence 
of a Lebesgue set for each function / G Z , 1 ^ ) . In fact the classical 
argument corresponds to the particular 0 given by 0(#, t) = | x —ƒ(/) | . 
The validity of the representation (*) is then established by use of the 
Vitali convergence theorem. 

The proof of the converse involves a modification of Nemytskii's 
argument for demonstrating that for any 0£Car(!T) the mapping 
x—xfrox preserves convergence in measure [6], together with the 
Banach-Saks theorem. 

For the case p< oo the argument is now based on the observation 
that F, = F\LCO(T) satisfies the hypotheses for the case £=oo and 
therefore possesses a unique representing function <j>' satisfying (a). 
Vitalli's convergence theorem then implies that 0 = 0 ' has the given 
properties. The converse utilizes a result of Krasnoselskii's on con­
tinuity of the transformation x—»0 o x. 

REMARK. In the linear case this reduces to the Riesz representation 
theorem, modulo a proof that 0(#, t) =xa(t) is in Car p ( r ) if and only 
if aEL«(T), l g p < o o . 

THEOREM. With (T, S, p) as in the preceding theorem let A be a trans­
formation such that A:Lp(T)—>C(S)t 1 HkpS °°i where S is a compact 
Hausdorff space. Suppose A satisfies the conditions 
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(ÎA) A(x+y)=A(x)+A(y) when xy — 0 a.e., 
(iiA) A is uniformly continuous relative to Z,00 norm on each bounded 

subset of L«(T), 
(inA) A is continuous relative to Lp norm, ifp<*>, and is continuous 

with respect to bounded a.e. convergence, if p= oo. 
Then there exists a transformation <£: S—>C3.rp(T) such that 

(*) A (x)(s) = f $(s)oxdfx. 

The transformation $ can be taken to satisfy 
(a) *(s) o 0 = 0 a.e. for all sES, 

in which case $(s) is unique, for each s, up to sets of the form RXN with 
N a null set in T. Moreover <ï> has the following additional properties: 

(b) the mapping s—*£(s) oxÇzLl(T) is weakly continuous f or each 
xEL*(T), 

(c) the mapping x-^$(s) ox is uniformly continuous relative to L00 

norm on each bounded subset of LM(T), uniformly in s, 
(d) the mapping x—>4>(s) ox is weakly continuous, on LP(T), uni­

formly ins,if p< oo \ifxn-*xboundedly a.e.thenlim^E)-** JE($(S) O xn)dfjL 
—»0, uniformly in s and n, if p= oo. 

Conversely, every transformation $ : S—>Ca,rp(T), ISpè™, satisfy­
ing (a), (b), (c), (d) determines by means of (*) a transformation 
A: Lp(T)-*C(s) satisfying (ÎA), (ÜA) and (ÜÏA). 

The above result also extends to cr-finite measure spaces. For p = oo 
it is valid if the following condition is added : 

(e) if xn—>x boundedly a.e., then for any sequence Ej J , 0 , 
JEj ($(s) o xn)dfjL-*0, uniformly in 5 and n. For p < oo it is valid if the 
phrase 'bounded subset of L°°(Ty is replaced by 'bounded subset of 
L°°(T) which is supported by a set of finite measure.' 

The proof utilizes the preceding theorem on functionals together 
with the Vitalli-Hahn-Saks theorem on convergence of measures. 

REMARK. For the linear case this result is well known (see [4, 
p. 490]). 
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