4. I. N. Sneddon, Special functions of mathematical physics and chemistry, Edinburgh (1961), 162.

5. Brij Mohan, Formulae connecting self reciprocal functions, Indian J. Phys. 15 (1941), 337-341.

6. W. T. Howell, On some operational representations, Philos. Mag. 24 (1937), 1082-1083.

7. V. V. L. N. Rao, A property of self reciprocal functions, Vijnana Parishad Anusandhan Patrika (1) 2 (1959), 51-54.

BHOLAKPUR, SECUNDERABAD-3, A. P., INDIA.

REPRESENTATION OF NONLINEAR TRANSFORMATIONS ON L^p SPACES

BY V. J. MIZEL

Communicated by Henry McKean, July 11, 1968

This note describes integral representations obtained for a class of nonlinear functionals and nonlinear transformations on the spaces $L^{p}(T)$ $(1 \le p \le \infty)$ associated with an arbitrary σ -finite measure space (T, Σ, μ) . The class of functionals considered here differs from those considered in [1], [3], [7], [8], [9] and its study is mainly motivated by its close connection with nonlinear integral equations [6].

In the study of nonlinear integral equations there is a fundamental class of nonlinear transformations, called Urysohn operators [6], taking measurable functions to measurable functions and having the form

(1)
$$(Ax)(s) = \int_T \phi(s; x(t), t) dt$$

where S, T are Lebesgue measurable subsets of R^n and $\phi: S \times R \times T \rightarrow R$ is a real valued function which is measurable on $S \times T$ for each fixed value of its second argument and continuous on R for almost all arguments in $S \times T$. An important subclass of (1) consists of those Urysohn operators whose range is in C(S) where S is compact. This subclass includes the case in which the kernel ϕ is independent of its first argument, so that the operator reduces to a real valued functional:

(2)
$$F(x) = \int_{T} \phi(x(t), t) dt.$$

Functionals of the form (2) also play an important role in the theory of generalized random processes in probability [5].

Our main result gives an abstract characterization, for all σ -finite measure spaces $T = (T, \Sigma, \mu)$ and all compact Hausdorff spaces, of nonlinear transformations $A: L^p(T) \rightarrow C(S)$, $1 \leq p \leq \infty$, which have the form (1). In particular we characterize functionals on $L^p(T)$ having the form (2). This latter characterization extends earlier results [7], [8] involving functionals of the form

(3)
$$F(x) = \int_{T} \phi(x(t)) d\mu$$

defined on (essentially) nonatomic σ -finite measure spaces. Detailed proofs and related results will be given elsewhere.

Hereafter $T = (T, \Sigma, \mu)$ will denote a σ -finite measure space and M(T) will denote the class of real valued measurable functions on T.

DEFINITION. A real valued function $\phi: R \times T \rightarrow R$ is said to be of *Caratheodory* type for T, denoted $\phi \in Car(T)$, if it satisfies

(i) $\phi(\cdot, t): R \rightarrow R$ is continuous for almost all $t \in T$,

(ii) $\phi(c, \cdot): T \rightarrow R$ is measurable for all $c \in R$.

Since for each simple function x, the function $\phi \circ x$ defined by $(\phi \circ x)(t) = \phi(x(t), t)$ is in M(T), it follows by taking limits of sequences of simple functions and using (i) that for every $x \in M(T)$, $\phi \circ x$ is also in M(T).

DEFINITION. Given a number p, $1 \le p \le \infty$, a function $\phi \in \operatorname{Car}(T)$ is said to be in the *Caratheodory* p-class for T, denoted $\phi \in \operatorname{Car}^p(T)$, if it satisfies

$$\phi \circ x \in L^1(T)$$
 for $x \in L^p(T)$.

[For the case of a finite nonatomic T it is known [6, p. 27] that ϕ is in Car^p(T), $1 \le p < \infty$, if and only if

$$|\phi(x, t)| \leq a(t) + b |x|^p$$
 for some $a \in L^1(T)$.]

THEOREM. Let $T = (T, \Sigma, \mu)$ be a finite measure space. Let F be a real valued functional on $L^{p}(T), 1 \leq p \leq \infty$, which satisfies

(i) $F(x+y) - F(x) - F(y) = const. = c_F$ whenever xy = 0 a.e.,

(ii) F is uniformly continuous relative to L^{∞} norm on each bounded subset of $L^{\infty}(T)$,

(iii) F is continuous relative to L^p norm, if $p < \infty$, and is continuous with respect to bounded a.e. convergence, if $p = \infty$. Then there exists a function $\phi \in \operatorname{Car}^p(T)$ such that

(*)
$$F(x) = -c_F + \int_T \phi \circ x \ d\mu \quad \text{for } x \in L^p(T).$$

Moreover ϕ can be taken to satisfy

(a) φ(0, ·)=0 a.e.
and is then unique up to sets of the form R×N with N a null set in T. Conversely, for every φ∈Car^p(T) satisfying (a), and for every c_F∈R,
(*) defines a functional satisfying (i), (ii) and (iii).

The above result extends to σ -finite measure spaces. For $p = \infty$ it remains valid as is. For $p < \infty$ it is valid if the phrase 'bounded subset of $L^{\infty}(T)$ ' is replaced by 'bounded subset of $L^{\infty}(T)$ which is supported by a set of finite measure.'

The proof occurs in two parts. First we consider the case $p = \infty$. The observation that $F_1 = F + c_F$ is a functional of the same type with $c_{F_1} = 0$ permits a reduction to the case $c_F = 0$. The construction of ϕ from F now depends on the fact that for each real number h the set function ν_h defined by

$$\nu_h(E) = F(h\chi_E),$$

where $\chi_{\mathbf{B}}$ denotes the characteristic function of $E \in \Sigma$, is by (i) and (iii) a μ -continuous measure on T. Hence by the Radon-Nikodym theorem there exists for each h a density $\phi_h = \phi(h, \cdot)$ corresponding to ν_h . The proof that the family $\{\phi_h | h \in R\}$ defines a function $\phi \in \operatorname{Car}^{\infty}(T)$ is a generalization of the classical proof of existence of a Lebesgue set for each function $f \in L^1(R)$. In fact the classical argument corresponds to the particular ϕ given by $\phi(x, t) = |x - f(t)|$. The validity of the representation (*) is then established by use of the Vitali convergence theorem.

The proof of the converse involves a modification of Nemytskii's argument for demonstrating that for any $\phi \in \operatorname{Car}(T)$ the mapping $x \rightarrow \phi \circ x$ preserves convergence in measure [6], together with the Banach-Saks theorem.

For the case $p < \infty$ the argument is now based on the observation that $F' = F | L^{\infty}(T)$ satisfies the hypotheses for the case $p = \infty$ and therefore possesses a unique representing function ϕ' satisfying (a). Vitalli's convergence theorem then implies that $\phi = \phi'$ has the given properties. The converse utilizes a result of Krasnoselskii's on continuity of the transformation $x \rightarrow \phi \circ x$.

REMARK. In the linear case this reduces to the Riesz representation theorem, modulo a proof that $\phi(x, t) = xa(t)$ is in $\operatorname{Car}^{p}(T)$ if and only if $a \in L^{q}(T)$, $1 \leq p < \infty$.

THEOREM. With (T, Σ, μ) as in the preceding theorem let A be a transformation such that $A: L^p(T) \rightarrow C(S), 1 \leq p \leq \infty$, where S is a compact Hausdorff space. Suppose A satisfies the conditions

166

(i_A) A(x+y) = A(x) + A(y) when xy = 0 a.e.,

(ii_A) A is uniformly continuous relative to L^{∞} norm on each bounded subset of $L^{\infty}(T)$,

(iii_A) A is continuous relative to L^p norm, if $p < \infty$, and is continuous with respect to bounded a.e. convergence, if $p = \infty$.

Then there exists a transformation $\Phi: S \rightarrow \operatorname{Car}^p(T)$ such that

(*)
$$A(x)(s) = \int_{T} \Phi(s) \circ x \, d\mu$$

The transformation Φ can be taken to satisfy

(a) $\Phi(s) \circ 0 = 0$ a.e. for all $s \in S$,

in which case $\Phi(s)$ is unique, for each s, up to sets of the form $R \times N$ with N a null set in T. Moreover Φ has the following additional properties:

(b) the mapping $s \rightarrow \Phi(s) \circ x \in L^1(T)$ is weakly continuous for each $x \in L^p(T)$,

(c) the mapping $x \rightarrow \Phi(s) \circ x$ is uniformly continuous relative to L^{∞} norm on each bounded subset of $L^{\infty}(T)$, uniformly in s,

(d) the mapping $x \rightarrow \Phi(s) \circ x$ is weakly continuous, on $L^{p}(T)$, uniformly in s, if $p < \infty$; if $x_{n} \rightarrow x$ boundedly a.e. then $\lim_{\mu(E) \rightarrow 0} \int_{E} (\Phi(s) \circ x_{n}) d\mu \rightarrow 0$, uniformly in s and n, if $p = \infty$.

Conversely, every transformation $\Phi: S \rightarrow \operatorname{Car}^p(T), 1 \leq p \leq \infty$, satisfying (a), (b), (c), (d) determines by means of (*) a transformation $A: L^p(T) \rightarrow C(s)$ satisfying (i_A), (ii_A) and (iii_A).

The above result also extends to σ -finite measure spaces. For $p = \infty$ it is valid if the following condition is added:

(e) if $x_n \to x$ boundedly a.e., then for any sequence $E_j \downarrow \emptyset$, $\int_{E_j} (\Phi(s) \circ x_n) d\mu \to 0$, uniformly in s and n. For $p < \infty$ it is valid if the phrase 'bounded subset of $L^{\infty}(T)$ ' is replaced by 'bounded subset of $L^{\infty}(T)$ which is supported by a set of finite measure.'

The proof utilizes the preceding theorem on functionals together with the Vitalli-Hahn-Saks theorem on convergence of measures.

REMARK. For the linear case this result is well known (see [4, p. 490]).

I wish to thank my colleagues Charles Coffman and Kondagunta Sundaresan, the former for several stimulating conversations and the latter for a very interesting comment.

This research was partially supported by the National Science Foundation under Grant GP 7607.

References

1. R. V. Chacon and N. Friedman, Additive functionals, Arch. Rational Mech. Anal. 18 (1965), 230-240.

2. B. D. Coleman and V. J. Mizel, Norms and semi-groups in the theory of fading memory, Arch. Rational Mech. Anal. 23 (1966), 87-123.

3. N. Friedman and M. Katz, Additive functionals on L^p spaces, Canad. J. Math. 18 (1966), 1264–1271.

4. N. Dunford and J. T. Schwartz, *Linear operators*. Part 1, Interscience, New York, 1958.

5. I. M. Gelfand and N. Ya Vilenkin, *Generalized functions*. Vol. 4, Academic. Press, New York, 1964, pp. 273–278.

6. M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, translated by J. Burlak, Macmillan, New York, 1964, pp. 20-32.

7. A. D. Martin and V. J. Mizel, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal. 15 (1964), 353-367.

8. V. J. Mizel and K. Sundaresan, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal. 30 (1968), 102-126.

9. K. Sundaresan, Additive functonals on Orlicz spaces, Studia Math. 32 (1968).

CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213