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1. Introduction. Andrews and Curtis [ l ] have shown that the 
second homotopy group of the complementary domain of a locally 
flat 2-sphere S2 in the 4-sphere S4 may not be trivial. This was shown 
to be the case if S2 is formed by spinning the trefoil knot. Epstein [3] 
has shown that if S2 is a spun nontrivial 2-sphere, then 7r2(S

4 — S2) is 
a free abelian group of infinite rank. Fox [ô] has suggested that it 
might be more fruitful to consider the second homotopy group with 
its 7Ti-action, and has asked for an algorithm for calculating 7r2(S

4—S2) 
as a TVi-module. Sumners [8] has constructed a knotted 2-sphere in 
S4 for which 7r2 has nontrivial /7Ti-torsion. 

The following theorem gives the structure of 7r2 as a j7ri-module for 
the case of spun 2-spheres. 

THEOREM 2. If k(S2) C S 4 is a 2-sphere formed by spinning an arc A 
about the sphere S2 and (x0l xi, • • • , #»: m, r2, • • • , rm)+ is a présenta-
tion of TTI(54—k(S2)) with x0 the image of the generator of wi(S2~-A) 
under the inclusion map, then 

(Xi(l ûiûn):Y, (drt/dXi)*Xi = 0 (1 ^ j ^ m)\ 

is a presentation of 7r2(5
4—k(S2)) as a Jwi-module. 

2. Outline of proof. Let 5 n be the standard «-sphere. Let S± be the 
closed domains of 5 n — S*""1. Let A be an arc in S+ which meets S2 

only in the end-points of A. Now rotate S% about S2. Then A sweeps 
out a 2-sphere k(S2) called a spun 2-sphere [2]. 

THEOREM 1. If k(S2)CSl is a spun 2-sphere, then 7r2(S4-£(S2)) 
~ K y [K, K ], where K is the kernel of the homomorphism i* : TI (5S—k (S2) ) 
—>7ri(54—k(S2)) induced by inclusion and [K, K] is the commutator 
subgroup of K. 

1 Supported by NSF Grant GP-5458. 
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Proof in brief. Let \f]EK, where f: (S\ l)->(S3-JfeS2, P). Since 
[ƒ] lies in the kernel of i*, there exists a g: (52, l)—>(54 —fe52, p) such 
that 

(1) g\Sl=f, 
(2) « ( S ^ C S 4 * - ^ , 
(3) g(tf-)CSL-kS\ 

Define $ : ü:->7r2(54-jfe(52)) as $[ƒ] = [g]. I t follows from the aspher-
icity of knots [7] that 7r2(S± -k(S2)) = 0, and hence that $:K 
—*W2(S*—k(S2)) is a well-defined homomorphism. It can now be 
shown that $ is onto and has [K, K] as its kernel. 

Note that the following sequences are exact: 

1 -» K J-$ TTI(53 - k(S2)) ^ 7n(^4 - £(S2)) -» 1 

1 -> [i£, K] -> Z -* 7r2(5
4 - k(S2)) -> 0. 

Hence the action of T T I ( S 4 - £ ( S 2 ) ) on T2(S
A-k(S2)) is obtained by 

lifting the elements of Ti(S*-k(S2)) by i* to 7n(S*-k(S2)) and then 
applying the natural action of 7Ti(53—k(S2)) on its normal subgroup 
K. 

Let (xo, Xi, X2, • • • , xn:ri, r2, • • • , rm)* be a presentation of 
7Ti(54 — k(S2)) with xo representing the image of the generator of 
7Ti(52 - k(S2)) under the homomorphism > : TTI(52 - k(S2)) 
—*7Ti(S4 —&(52)) induced by inclusion. A corresponding presentation 
of G = 7Ti(S3 — k(S2)) is («o, *±i, x±2, • • • , *± t t : r±i , r±2, • • • , r±m)*» 
where r»(#0, #-i, • • • , x_n)=r_ t-. Then K is the normal closure of 
{0 (*<#!< )} in G. 

By means of the Reidemeister-Schreier theorem [5] it can be shown 
tha t : 

LEMMA 7. ( {xa} aeH: {ra} aeH, {x~w(i ^ 0)} peii) is a presentation of 
K, where H=7n(5 4 - fe(5 2 ) ) . 

Lifting the action of Ti(S*-k(S2)) °n w2(S
A-k(S2)) up to this pre­

sentation, we have Theorem 1. 
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Introduction. In this paper we consider smooth knots, i.e., smooth 
embeddings <£: Sn—>SW+2, n^3. Two knots <j> and rj are said to be 
equivalent if there is a diffeomorphism ƒ : Sn+2—>Sn+2 such that 
f<t>(Sn) = rj(Sn). The embedding <j> extends to an embedding $: SnXD2 

—>Sn+2, and any two such extensions are ambient isotopic relative 
to SnX0. Hence if A = c\(Sn+2-$(SnXD2)), the pair (A, dA) is deter­
mined up to diffeomorphism by the equivalence class of <f>. We call 
(A, dA) the complementary pair, or simply the complement, of the 
knot <j>. In this paper we show that if iriA, the fundamental group of 
the knot, is infinite cyclic, then there is at most one knot inequivalent 
to <j> with complementary pair (B, dB) of the same homotopy type as 
(A }dA). This result is of interest because for any n^ 3 there are many 
inequivalent knots <t> : Sn—*Sn+2 with fundamental group Z, see for 
example [12]. (The result also holds in the P.L. case, provided 4> 
extends to a P.L.-embedding $: SnXD2->Sn+2.) 

1. Knots with diffeomorphic complements. In [4], Gluck showed 
that homeomorphisms of S2XS1 are isotopic if and only if they are 
homotopic and used this result to conclude that there are at most two 
knots </>: S2—*SA with homeomorphic exteriors. In [ l ] , W. Browder 
studied the pseudo-isotopy classes of diffeomorphisms (and P.L. 
equivalences) of S1XSn for n^5. He showed that two P.L. equiva­
lences are pseudo-isotopic if and only if they are homotopic. For the 
group ^>(SnXSl) of pseudo-isotopy classes of diffeomorphisms, he 
obtained the exact sequence 


