1st Step. Exactly as in [1], we prove that $(Pr. AP)_n$ has a weak solution u^n for which the inequality (1) holds.

2nd Step. Following the argument in [1] with a slight modification we show that it is possible to select a subsequence $\{v^n\}$ of $\{u^n\}$ such that v^n converges to \bar{u} weakly in $\hat{H}^1_{\sigma}(\hat{B}), v^n \mid E$ converges to 0 strongly in $L_2(E)$, and that for every compact set $K \subset \hat{\Omega}$ the restriction of v^n to K converges strongly in $L_2(K)$. It is easy to verify that $u = \bar{u} \mid \hat{\Omega}$ satisfies (2).

3rd Step. Use the following lemma to show that $u \in \hat{H}^1_{\sigma}(\hat{\Omega})$. We recall (A3).

LEMMA 5. Let $w \in \hat{H}^1_{\sigma}(\hat{B})$. If w = 0 in $E = \hat{B} - \hat{\Omega}$, then $w \mid \hat{\Omega} \in \hat{H}^1_{\sigma}(\hat{\Omega})$.

4th Step. Following the argument in [2] or reexamining the procedure in the 2nd step, we realize that u(t) satisfies the second condition of Definition 3 after possible redefinition on a null set of t.

References

1. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231.

2. J. Serrin, Initial value problem for Navier-Stokes equations, nonlinear problems, Univ. of Wisconsin Press, Madison, 1963, pp. 69–98.

THE UNIVERSITY OF TOKYO, JAPAN AND

NATIONAL RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, PRETORIA, SOUTH AFRICA

ERRATUM, VOLUME 74

C. A. Berger and L. A. Coburn, C*-algebras of translations and multipliers, pp. 1008–1012.

The proof of Lemma 2 is incorrect. Theorem 1 remains correct provided we add the hypothesis that G has an element which acts ergodically by translation. In this case, we can apply the pointwise ergodic theorem and the Lebesgue dominated convergence theorem in place of Lemma 2.

468