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1st Step. Exactly as in [l], we prove that (Pr. AP), has a weak
solution #* for which the inequality (1) holds.

2nd Step. Following the argument in [1] with a slight modification
we show that it is possible to select a subsequence {2} of {u"} such
that o» converges to @ weakly in A*(B), v"l E converges to 0 strongly
in L;(E), and that for every compact set K CQ the restriction of v* to
K converges strongly in Ly(K). It is easy to verify that u = 12] Q satis-
fies (2).

3rd Step. Use the following lemma to show that xS HA:(Q). We
recall (A3).

LemMA 5. Let w€ HLX(B). If w=0 in E=B—Q, then w|QCALQ).

4th Step. Following the argument in [2] or reexamining the proce-
dure in the 2nd step, we realize that u(#) satisfies the second condition
of Definition 3 after possible redefinition on a null set of ¢.
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The proof of Lemma 2 is incorrect. Theorem 1 remains correct
provided we add the hypothesis that G has an element which acts
ergodically by translation. In this case, we can apply the pointwise
ergodic theorem and the Lebesgue dominated convergence theorem
in place of Lemma 2.



