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Introduction. Let 3 be a semisimple Jordan algebra over an alge
braically closed field $ of characteristic zero, and let G be the auto
morphism group of 3 . The purpose of this note is to present general 
results on G, the proofs of which do not involve the use of the classi
fication theory of simple Jordan algebras over <ï>. Specifically, we wish 
to determine the algebraic components Go, Gi, G2, • • • of the linear 
algebraic group G. To this end, we will give a formula for the number 
of components of G in terms of certain root-spaces associated with 3 
(see the Corollary to Theorem 3 and Theorem 6 below). For each com
ponent d of G, the index of G«- is defined to be the minimum dimen
sion of the 1-eigenspacesof the automorphisms belonging to G». We 
will give a formula for the index of each component G< of 3 (see 
Theorem 8). Finally, we will give a table which applies these theorems 
to each of the simple Jordan algebras over $ . 

These results are analogous to those on Lie algebras given in [4, 
Chapter 9] and [5]. 

1. Notation and terminology. Let 3 , G, and 4> be as above. Follow
ing [3], we write x.y for the product of elements x, y of 3 and let 
Rv:x—>x.y. We let 2) be the derivation algebra of 3?. We denote by 
8 the structure Lie algebra i?3©2) of 3 , and by $ the Koecher-Tits 
algebra 3f©5©8 of 3 [3, Chapter 8] , SD and 8 are completely reduc
ible. Thus if S is the center of 8 and @ the center of ©, then 8 = 2 0 8 ' 
and © = (S©S)/, where 8' and 3)' are semisimple. $ is semisimple and 
is simple if and only if 3 is simple. Let T be the structure group of 
3? [3, Chapter 2] . G and F are linear algebraic groups; we let Go and 
To be respectively the algebraic components of the identity of these 
groups. If 17EI1, then rj:a+h+L—>ari+(bri*-1)-+r)-1Lri is an auto
morphism of $ ; here rf=U\nrrl, where in general UX = 2RX

2 —R** 
(see [ô]). The mapping rj^rj is a birational isomorphism from V onto a 
subgroup f of Aut $ . f is the subgroup of Aut $ of elements fixing i?i 
(where 1 is the identity of 3 ) . 

1 These results are contained in the author's doctoral thesis, written at Yale 
University under the direction of Professor N. Jacobson. The research was supported 
in part by an NSF Graduate Fellowship and in part by NSF grant GP-8023. 
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Let SB be a fixed Cartan subalgebra of 2). Then SB = @0SBi, where 
SBi^SBHS' is a Cartan subalgebra of 8'. Let St= {*€:3|aSB = 0}. 
§ = 2?H+SB is the unique Cartan subalgebra of 8 containing SB, and 
any Cartan subalgebra of 8 is a Cartan subalgebra of $. If £ i = £ n 8 ' , 
then $ i is a Cartan subalgebra of 8' and $ = Ê © $i. We let (, ) denote 
the Killing form of $ and also the nondegenerate symmetric bilinear 
form on $* induced by the Killing form of $. Similarly, we let ( , ) 
denote the Killing form of 8' and the corresponding form on §i*. 

2. Roots and root spaces. Let a—>â be the linear transformation 
from §î to §* which is the dual of the natural projection of 
£ = S © £ i o n t o $i. 

THEOREM 1. If pis a root of $ then p(Ri) = + 1 , — 1, or 0 according as 
the root space $ p belongs to 3 , $, or 8'; If ais a root of 8' /ten 4 is a 
root of $ . The roots of $ of the form â(aa root of 8') are exactly the roots 
p such that p(Ri)=0. If a, jS are two roots of 8' then 2(a, j8)/(a, o?) 
= 2(<2, $)/(<$, â). If ai, • • - , a* is a simple system of roots of 8', /ten 
/tere is a unique set {pi, • • • , pr} of roots of $ s«c& /te/ pi(i?i) = • • • 
=pf(i?i) = 1 and {pu • • • , pr, <$i, • • • , ai} is a simple system of roots 
of®. 

The mapping e: a+b+Rc+D->b+â-Re+D (a, 6, cG3 , 2? £35) 
is an automorphism of $. It stabilizes 8, 8', S, $, and $i; we let e* 
denote the dual transformation both of $* and §*. §i* is the direct 
sum of the subspaces {a£§* |a€* = — a} and {a£^)*|a€*=a}, and 
these subspaces are orthogonal with respect to ( , ). The second sub-
space can be identified in a natural way with SB*. For a £ § * , let a+ 
be the projection of a onto SB*. It can be seen that €* stabilizes some 
simple system of roots of 8'. In this way €* induces an automorphism 
of the Dynkin diagram of 8'. We can therefore apply [8, Theorem 32] 
to conclude that {a+|a is a root of 8'} is a (not necessarily reduced) 
root system, which we call 2«. 

THEOREM 2. Let a be a root of 8' and let Ra+B be a root vector for a. 
Then B is nonzero if and only if ot\ SBi is a root of 3)'; in this case 
a(Q£) = 0 and a\ SBi tes root vector B. If w is a root of 3)' then there is a 
root (3 of 8' with root vector Ra+B, B 5*0, such that /3| SBi=0). 

This theorem allows us to identify the roots of 3)' with a subset of 
2«. Thus if a is a root of 8' and a\ SBi=<a is a root of 3)', we identity w 
with a+. If co, \p axe roots of 3)' identified respectively with a+ and j8+ 
and if w+ and wp+ are the reflections of the appropriate root spaces in 
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the directions of \f/ and j8+ respectively, then it can be shown that 
a+wp+ is identified with (aw+. This means that the Weyl group of 3)' 
can be embedded in a natural way in the Weyl group of Sf. 

3. Automorphisms. From now on we assume we have a fixed simple 
system au • • • , ai of roots of 8' stabilized by e*. We let 

{pu • • • , Pr, âh • • • , ai] 

be the corresponding simple system of roots of ft, as in Theorem 1. 

THEOREM 3, (a) IfrjÇzT then there exists a r £ f o so that rjr stabilizes 
$ . 

(b) J/^GAut ft and rj stabilizes § , thenrjÇzf if and only rj* (the dual 
transformation of rj\ § ; note that rj* permutes the roots of ft) permutes 
the roots p of ft such that p(Ri) = 1. 

(c) If ?;£P stabilizes §, then rj^foif and only if rj* is in the Weyl 
group of ft. 

COROLLARY. Each algebraic component of Aut ft contains at most 
one component of V. It contains exactly one if and only if the correspond
ing automorphism of the Dynkin diagram of ft permutes the points corre
sponding to pu - - • , Pr» Thus [T: TO] is the number of such automor
phisms of the diagram of ft. 

THEOREM 4. (a) Ifrj^G, there exists r Göo so that t\r stabilizes §. 
(b) IfrjÇzG stabilizes § , then 77* (acting in >̂*) permutes the roots p of 

ft such that p(Ri) = 1 and commutes with e*. Conversely, if w is a linear 
transformation of £* which permutes the roots of ft, permutes the roots p 
such that p(Ri) = 1, and commutes with €*, then there is a f £G such that 
\ stabilizes § and f* — w. 

THEOREM 5. Let );6G. Necessary and sufficient conditions f or 17 to be 
in Go are that 

(i) rj commutes with any E £@> 
(ii) ij\ 35' is in the component of the identity of Aut 35', 
(iii) rj is in the component of the identity of Aut ft. 

THEOREM 6. The number of components of G is the number of compo
nents of T times the index of the Weyl group of 3)' in the Weyl group of 
2«. 

We also see from Theorem 5 that a component of G is specified by 
giving the corresponding action on S together with the corresponding 
automorphisms of the Dynkin diagrams of ft and 35'. 
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4. Fixed points. If 33 is a vector space over $, X£$, and 
i7EHom*(33, 33) then by 33x0?) we mean the X-eigenspace of 17. If G% 
is a component of G, the index of G» is defined to be the minimum 
dimension of Si(v) f° r *?££<; if ^£Gt-, 17 is said to be regular if 
dim Qi(rj) equals the index of Gi. 

THEOREM l.Ifrj^G then Si(rj) is a semisimple subalgebra of 3 . The 
automorphism rj is regular if and only if 3i(rç) is associative (i.e., is a 
direct sum of fields). Ifrj is regular then TJ fixes Si(v) pointwise. 

COROLLARY. The index of d is also the minimum dimension of the 
fixed point spaces of automorphisms in Gi. 

THEOREM 8. Let Gi be a component of G. Let N be the index of Gi. Let 
M be the index of the component of Aut $ to which d belongs. Let P be 
the index of the component of Aut 35' to which &\ 35' belongs. Since for 
? EG»-, f | ® is independent of f (by Theorem 5(i)), we can let Q be the 
dimension of @i(f | @) for f £G<. Then N = M-P-Q. 

COROLLARY. The index of G0 is rank $—rank 35. 

THEOREM 9. The minimum dimension of the kernel of a derivation of 
3? is the same as the minimum dimension(for all derivations D) of 
So(D). This number is rank $—rank 35. 

5. Examples. We recall the classification of simple Jordan algebras 
over $ (see [3]). Any finite-dimensional simple algebra is isomorphic 
to one of the following. 

(i) $1 ©33, the Jordan algebra of a vector space 33 of dimension at 
least 2, equipped with a nondegenerate symmetric bilinear form; 

(ii) §(4>n)> the Jordan algebra of all symmetric nXn matrices over 

(iii) $n , the Jordan algebra of all n Xn matrices over 3>; 
(iv) £($2n, Js), the algebra of all 2nX2n matrices symmetric with 

respect to a skew bilinear form; 
(v) §(£)*)t the set of all 3X3 hermetian matrices over the Cayley 

algebra O. 
For all these algebras except $1©33, dim 33 = 2, 3) is semisimple 

[ l ] ; i.e., (§ = 0. In this case the components are uniquely specified by 
the corresponding automorphisms of the Dynkin diagrams of $t and 
£). The accompanying table shows how these theorems apply to each 
of the components of G for each of these algebras. The circled points 
in the diagrams of $ are the points corresponding to the simple roots 
Pi» • • • y Pr-
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