GENERALIZATION OF THE JACKSON APPROXIMATION
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Communicated by Gian-Carlo Rota, October 22, 1968

1. Introduction. The aim of this note is the generalization of the
theorems of D. Jackson [1]-[5] for linear combinations Y, !_, ax?.

TreEorEM 1 (CH. MtNTZ [1], [2], [4]). Let po, p1, - - - be distinct
real numbers such that 0= po<p1< - - - and limg,, pi= ». The set
of powers { xm, xm, - - -} is fundamental (with the uniform norm) in

Clo, 1] if and only if po=0and D 2, 1/pi= .

Considering this theorem we ask whether the error in the? best
uniform approximation of f,

1) E.(f; {p.}) =rrgn (m[a.x]|f(x) - z.:a.-xl’-'l),
zeo,1 $==0

satisfies inequalities similar to those of the Jackson theorems for the
error

(2) En(f): =min (len[a):] [f(x) — Zn ait|)

when the exponents p; are of the type of Theorem 1. Our problem is
therefore to find a connection between the asymptotic behaviour of
the error E,(f; { p.-}) for s— , the sequence {p.-}, and the “smooth-
ness” of the function f. We only present our main results here. The
full details will be published elsewhere.

2. Jackson theorems for polynomials > i, ax®", r>0. We con-
sider the sequence p;=1i-7, iENU{O} and r>0, where N
={1,2,3,---}. Then we approximate the function fEC[0, 1] by
polynomials P,(x) = D> i_, ax’r. We first assume that f(x) =x? and
consider E,(x¢; {i-r}).

1 The results of this note were announced by the author in lectures held on Sep-
tember 16, 1967 at the German Mathematical Congress, Karlsruhe, on May 25, 1968
at the Bavarian Mathematical Congress, Eichstitt, and at the Mathematical Re-
search Institute, Oberwolfach, Black Forest, in July 1968. The author is very grateful
to Doz. Dr. P. O. Runck for helpful comments and suggestions.

3 If po=0, then for each function fEC[0, 1] the polynomial D ;_sa:x? of best
approximation is unique since the set of functions {1, x#, ..., x7} satisfies the
Haar condition on [0, 1].
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THEOREM 2. If ¢>0 is a positive real number and q/r&E N, then

E,(x%; {i-7}) = min ( max |a7 — f_':a.-x"'l) = O(s%/7)
u ze (0,1

s $=0
for s— o ; but s*+2alr. F,(x9; {i-r}) is unbounded for each ¢>0.

TrEOREM 3. If fEC[0, 1] and w(f; 8) denotes the modulus of con-
tinuity of f, then the error E,(f; {i'r}) has the following properties:

(a) for r=2: E(f; {i-r})_S_C,-w(f; s, C,=C=1+n2%/2,

(b) for 0<r<2: E,(f; {i-r})SC! -w(f; s, C! =C-(1+1/r).

THEOREM 4. Let fECI0, 1] have a continuous derivative f® of order
E=04n [0, 1] and f®ELip @, 0<a=<1. If 1/r&N, then as s—»

(a) fOf r=2: E'(f; {1,.73) =0(S—min((k+a) '2lr.2lr)),

(b) for 0<r<2: E,(f; {i-r}) =0(sminlk+a2i),

REMARKS. (i) It is possible to show by examples that the results of
Theorems 3 and 4 cannot be improved; only the constants C, and
C/ might be smaller.

(ii) The order s—%r in Theorem 4 is to be expected, since for the
analytic function f(x) =x the property £,(x; {i-7})=0(s"%) cannot
be improved (Theorem 2).

(iii) The converses of the above (p;=1:r) Jackson-type theorems
(thus Bernstein-type theorems) are also possible.

3. Jackson theorems for polynomials Y 7o @, Q= {gi, - * -, qur}
CN. Another important special case will now be discussed. Let Q
={g, - -+, gu}CN be a finite set. Considering algebraic poly-
nomials P,(x) = D 7 ;.0 @i’ we derive some estimates for the error

®) E(;D): =min (max |f(s) — > aat])
ze0,1] =0, {€Q
and we are interested in the behaviour of E,(f; Q) for n— .
THEOREM 5. If ¢EQ, then we have for E,(x?; Q) defined by (3)
E,(x5,Q) = 0(n™), n— o
but n2e+e. B, (x2; Q) is unbounded for each ¢>0.

THEOREM 6. Let 1 21 < - - - <qu.
@) IffECl0, 1], then for n>qu

E(f;0) S do-o(f;n);
where Ao=Ao(q1, * + -, qu), but Ao is independent of f and n.
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(b) IffEC*0, 1], k=1, then E.(f; Q) satisfies the following inequal-
ity for n>max{k, qu}:

E(f;Q) S 4e-n*-0(f®;n7) + Bene,
where Ak=Ak(Q1, c e, qu)' Bh=Bb(Q1, c e, g f(q)(O), ey,
f(q.)(())), q’.ék’ and
¢* = min Q* = min {g€Q|g = £,f©(0) # 0},
=4 o, ifQ* = Pisempty.
(c) If feCk[0,1],k=0and f®ECLipa, 0 <a =<1, then
E.(f;0) = O(nmintktatel) 5 0.

Now we compare Theorem 6(c) with the estimate given by the classi-
cal Jackson theorem: E,(f) =O0(n~*-¢), if E,(f) is defined by (2). As
E,(f)S E.(f; Q) and as E,(x?") =0(n"?¢*) for the analytic function
f(x)=x (if ¢*< ), the order O(n—=inlk+=.2¢*t) in Theorem 6(c) is
optimal and cannot be improved.

4. Jackson theorems for polynomials D ., ax?. Let {p:} be an
arbitrary sequence with 0=p,<p1< - -+ and lim;,, p;=». Two
characteristic quantities will help us to characterize the density of
this sequence {p;} in comparison with the density of N.

2 1/ 2 1/

<pisn <p;sn

A: =liminf ———————, A: =lim sup
n—so n n—o n
/i > 1/i
=1 fe=]

We can prove important results having many applications if the
sequence { p.-} satisfies the following three conditions:

(4) (@) 0=po<pr< - - -.

(b) There exists a number A>0 with p,a—p;=A for ¢=0, 1,
2,---3

(c) A>0.

THEOREM 7. Let the sequence {p:} satisfy (4), let g positive and
a6 {p:} ien, and let E,(x3; {p.-}) be defined by (1). Then for each ¢>0

E(x; {p:}) = O(pi28-0%9);

3 The following two Theorems 7 and 8 also remain valid if one takes p;=i-A,
1€ N, instead of piy1—H=A.
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but pPAT. B, (x9; {p:}) is unbounded.

THEOREM 8. Let the sequence { pi} satisfy (4) as before.
1. Case. A<%.
(a) If fEC[0, 1], then to each €>0 there exists a number N
=N (e, {p.—})EN such that for s= N

E(f; {P;}) = Ro-w(f; p24+);
where Ry is a constant, independent of s, f, { p:}.
(b) If fECk[0, 1], k=1, then E,(f; {pi}) satisfies for s=N

—2A+4e —~2Ak+tek —2Ag"% e

E(f;{p:]) S Rew(f®; p0 )-pa + Ri-p, ,

where Re=Ri(e, {p:}), RI =Ri (e, {p:}, f00), 1Sv<k, v {pi},
and

¢* = min Q* = min {¢EN|g < &, ¢ {p:}, 7@(0) =0},
=+, ifQt=2a.

In particular, if fEC* [0, 1], k=0, and f®ELip a, 0<a =1, then for
each ¢>0

E(f; {p:)) = pa-O((py" yminitta.cty),

I1. Case. A>1%.
(@) If feclo, 1], then to each €>0 there exists a number M
=M(e, {p:}) EN such that for s= M

E(i {ph) £ Rewlfspi ),
where Ro=Ry- (1+24) is independent of f and s.
(b) If fECt[0, 1], k=0, and f® ELip a, 0<a =1, then the error
E,(f; {p:}) satisfies for each €>0

E.(f; {p‘}) _ ?:'0(?:min( (k+a)A/4,24g )), s> o0

REMAREKS. 1. Using Theorem 7 for f(x) =x¢" (if ¢* < ) the order
p722* in Theorem I(b) and I1(b) is to be expected.

2. It is surprising that the cases A<% and A>1 have to be distin-
guished. But if we compare with §2 (p;=1-7), we notice the same
phenomenon: In the case p;=4-r the quantities A and A are both
equal to 1/r and therefore the cases

r=22 and AS1/2, 0<7r<2 and A>1/2

correspond to another.
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3. The quantities A and A in §3 have the property A=A=1.

4. If we apply Theorems 7 and 8 to the particular cases treated in
§2 or §3 and compare with the results of §2 or §3, we notice that they
differ only by a factor { for any ¢>0.
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