SOME NONZERO HOMOTOPY GROUPS OF SPHERES

BY EDWARD B. CURTIS

Communicated by William Browder, December 12, 1968

1. The purpose of this note is to establish some nonzero elements in the homotopy groups of spheres. This results from unstabilizing a method of Adams. Namely, an Adams spectral sequence is used to detect elements in $\pi_{n+1}(S^n)$ for various n and i; in addition to the dand e invariants of Adams, the Hopf invariants are used to show that certain of these elements are nonzero. One consequence will be the following.

Consequence. The groups $\pi_{4+i}(S^4)$ are nonzero for all $i \ge 0$.

2. Recall the mod-*p*-restricted lower central series spectral sequence (abbr: mod-*p*-RLCSSS), constructed as in [4], [5] and [10]. For each simplicial set X, form GX as in [6], filter GX by its mod-*p*-RLCS, and pass to the homotopy exact couple. The resulting spectral sequence we will label $E_{s,d}^r(X)$, where s = filtration and d = dimension. The results of [4, §(2.4)] show that for the sphere spectrum S, the term $E^1(S)$ of the mod-2-RLCSS is a ring \wedge , with multiplicative generators λ_i for each $i \ge 0$. An additive basis for $E^1(S)$ consists of all monomials $\lambda_I = \lambda_{i_1} \cdots \lambda_{i_k}$, where $I = (i_1, \cdots, i_k)$ is a sequence of nonnegative integers with $2i_j \ge i_{j+1}$ for $j=1, 2, \cdots, k-1$. Call such monomials allowable. In the unstable case, the results of [4, §(5.4)] show that for the *n*-sphere S^n , $E^1(S^n)$ is the subvector space of \wedge with basis all λ_I which are allowable and for which $i_1 < n$. Such a monomial $\lambda_I \in E^1(S^n)$, where $I = (i_1, \cdots, i_k)$, has filtration k, and dimension $n + \sum i_j$.

3. There is a short exact sequence of differential vector spaces:

$$0 \to E^{1}_{s,n+i}(S^{n}) \xrightarrow{i} E^{1}_{s,n+i+1}(S^{n+1}) \xrightarrow{h} E^{1}_{s-1,n+i+1}S^{2n+1}) \to 0$$

where i is the inclusion and h is defined on the allowable basis by

$$h(\lambda_j \lambda_I) = \lambda_I \quad \text{for } j = n,$$

= 0 for $j < n.$

From this, there derives a long exact sequence

(3.1)
$$\cdots \to E^2(S^n) \xrightarrow{i_*} E^2(S^{n+1}) \xrightarrow{h_*} E^2(S^{2n+1}) \xrightarrow{\partial} \cdots$$

It can be shown that h_{*} commutes with all differentials, and is induced

by the Hopf-invariant in the SHP-sequence of Whitehead, James:

$$\cdots \to \pi_{n+1}(X^n) \xrightarrow{S} \pi_{n+i+1}(S^{n+1}) \xrightarrow{H} \pi_{n+i+1}(S^{2n+1}) \xrightarrow{P} \cdots$$

From the sequence (3.1), some calculations in $E^2(S^n)$ can easily be made.

4. For each $m \ge 0$, define functions $\phi_2(m)$, $\phi_3(m)$, $\phi_4(m)$, $\phi_5(m)$, $\phi(m)$ by the rules:

m = 8k +	0	1	2	3	4	5	6	7
$\phi_2(m) = 4k +$	0	1	2	3	4	4	5	4
$\phi_3(m) = 4k +$	0	1	2	3	3	4	3	4
$\phi_4(m) = 4k +$	0	1	2	3	3	4	4	4
$\phi_5(m) = 4k +$	0	1	2	3	3	4	4	4
$\phi(m) = 4k +$	0	1	2	3	3	3	3	4

The function $\phi(m)$ describes the Adams vanishing line: $\operatorname{Ext}_{A_1}^{s,l}(Z_2, Z_2) = 0$ for $s > \phi(t-s)$. Unstably, the functions $\phi_n(m)$ (set $\phi_n(m) = \phi(m)$ for $n \ge 6$) also describe a vanishing line, possibly modulo a tower, as follows.

THEOREM. $E_{s,n+i}^2(S^n) = 0$ for $s > \phi_n(i)$, except for the tower at i = 0, and the tower which occurs when n is even and i = n - 1.

This can be proven using the stable vanishing line $\phi(m)$ of Adams [1], (3.1), and downward induction.

COROLLARY. In the 2-component of $\pi_{n+i}(S^n)$, each element has order $\leq 2^{\phi_n(i)}$.

This is of course the unstable analogue of [1, p. 69]. There is also a similar vanishing line for each prime p, and all together give a bound for the order of any element (of finite order).

5. Let P be the periodicity operator defined by the Massey product $P(x) = \{x, \lambda_0^4, \lambda_7\}$. The following table describes some (not all) non-zero elements in $E^2(S^n)$ near the vanishing line. They are cycles in every $E^r(S^n)$ for which they are defined, as the differentials on them land in the vanishing-zone or in a tower.

Stem dim <i>i</i>	Filtration s	$\begin{array}{c} \text{Minimum} \\ \text{value of } n \end{array}$	Element in $E^2(S^n)$	Stable element in Ext (Z_2, Z_2)
8k	4k - 1	3	$P^{k-1}(\lambda_2\lambda_3^2)$	$P^{k-1}(c_0)$
8k + 1	4k	2	$P^{k-1}(\lambda_1\lambda_2\lambda_3^2)$	$P^{k-1}(h_1c_0)$
	4k + 1	3	$P^{k}(\lambda_{1})$	$P^{k}(h_{1})$
8k + 2	4k + 2	2	$P^k(\lambda_1^2)$	$P^k(h_1^2)$
8k + 3	4k + 1	5	$P^k(\lambda_3)$	$P^k(h_2)$
	4k + 2	3	$P^k(\lambda_2\lambda_1)$	$P^k(h_0h_2)$
	4k + 3	2	$P^{k}(\lambda_{1}^{3})$	$P^k(h_0^2h_2)$
8k + 4	4k + 2	4	$P^k(\lambda_3\lambda_1)$	0
	4k + 3	3	$P^{k}(\lambda_{2}\lambda_{1}^{2})$	0
8k + 5	4k + 3	4	$P^{k}(\lambda_{3}\lambda_{1}^{2})$	0
	4k + 4	3	$P^{k}(\lambda_{2}\lambda_{1}^{2})$	0
8k + 6	4k + 4	4	$P^{k}(\lambda_{3}\lambda_{1}^{3})$	0
8k + 7	4k + 4	5	$P^{k}(\lambda_{7}\lambda_{0}^{3})$	$P^k(h_0^3h_3)$

TABLE

The elements $P^{k-1}(c_0)$, $P^{k-1}(h_1c_0)$, $P^k(h_7)$, $P^k(h_1^2)$, $P^k(h_2)$, $P^k(h_0h_2)$, $P^k(h_0^2h_2)$, $P^k(h_0^2h_3)$ are shown never to be boundaries in the stable Adams spectral sequence because of nonzero d or e invariants; see [2], [7], [8], [9]. Hence, by naturality of suspension, their precursors are never boundaries in each $E^r(S^n)$ of the mod-2-RLCSSS.

The Hopf-invariant $h_*: E^r(S^3) \to E^r(S^5)$ shows that the elements $P^k(\lambda_2\lambda_1^2)$, $P^k(\lambda_2\lambda_1^3)$ are not boundaries in any $E^r(S^3)$, since h_* of them are not boundaries in $E^r(S^5)$. Similarly, the elements $P^k(\lambda_3\lambda_1)$, $P^k(\lambda_3\lambda_1^2)$ and $P^k(\lambda_3\lambda_1^3)$ are never boundaries in any $E^r(S^4)$.

6. For odd primes p, the E^1 -term of the mod-p-RLCSSS for odd spheres is described in [4, §8]. The analogous vanishing statement is $E_{s,n+i}^2(S^n) = 0$, for all odd n, and s > [i+3/2p-2]. Also, in filtration k and dimension 3+2k(p-1)-1, $E^2(S^3)$ has a single generator say a_k . As all differentials on a_k land in the vanishing zone, a_k is a permanent cycle; also, a_k is never a boundary, shown by a mod-p version of [9]. Thus a_k detects a nonzero class of order p in $\pi_{s+2k(p-1)-1}(S^3)$. Of course the element detected by a_k is just (a nonzero multiple of) Toda's α_k shown to be nonzero by Adams' e-invariant argument.

7. It is now easy to exhibit some nonzero homotopy classes, as each of the elements in the table detects a nonzero class in $\pi_*(S^n)$ for the corresponding value of n. Using also the elements $\alpha_k(3)$ for stems

 \equiv 7(mod 8), there follows consequence (1). Further, $\pi_{3+i}(S^3)$ is nonzero at least for all $i \neq 6 \pmod{8}$, and hence also $\pi_{2+i}(S^2)$ is nonzero at least for all $i \neq 7 \pmod{8}$.

BIBLIOGRAPHY

1. J. F. Adams, Stable homotopy theory, Springer-Verlag, Berlin, 1964.

2. —, On the groups J(X). IV, Topology 5 (1966), 21-71.

3. M. G. Barratt (unpublished).

4. A. K. Bousfield et al., The mod-p-lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342.

5. E. B. Curtis, Simplicial homotopy theory, Lecture Notes, Aarhus University, Denmark, 1967.

6. D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math (2) 67 (1958), 282-312.

7. M. Mahowald, The meta-stable homotopy of Sⁿ, Mem. Amer. Math. Soc. No. 72, 1967.

8. —, On the order of the image of J, Topology 6 (1967), 371-378.

9. C. R. F. Maunder, On the differentials in the Adams spectral sequence for the stable homotopy groups of spheres. I, II, Proc. Cambridge Philos. Soc. 61 (1965), 53-60, 855-868.

10. D. L. Rector, An unstable Adams spectral sequence, Topology 5 (1966), 343-396.

11. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49, Princeton Univ. Press, Princeton, N. J., 1962.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139