PARTIAL DIFFERENTIAL OPERATORS ON $L^{p}(E^{n})$

BY MARTIN SCHECHTER¹

Communicated by C. B. Morrey, Jr., October 4, 1968

Let $P(\xi)$ be a polynomial in the variables $\xi = (\xi_1, \dots, \xi_n)$. If we replace ξ by $D = (D_1, \dots, D_n)$, where $D_j = -i\partial/\partial x_j$, $1 \le j \le n$, we obtain a constant-coefficient partial differential operator P(D). Acting on the set C_0^{∞} of smooth functions with compact supports in Euclidean *n*-dimensional space E^n , the operator P(D) is closable in $L^p = L^p(E^n)$ for $1 \le p \le \infty$. The purpose of this note is to describe some of the spectral properties of its closure P_{0p} in L^p .

PROPOSITION 1. $\sigma(P_{02})$ consists of the closure of the set of values taken on by $P(\xi)$ with ξ real.

PROPOSITION 2. A point λ is in $\rho(P_{0p})$ if and only if $1/[P(\xi) - \lambda]$ is a multiplier in L^p (cf. [1]).

In applying this proposition we shall let $\mu = (\mu_1, \dots, \mu_n)$ be a multi-index of nonnegative integers. We set $|\mu| = \mu_1 + \cdots + \mu_n$ and

$$P^{(\mu)}(\xi) = \partial^{|\mu|} P(\xi) / \partial \xi_1^{\mu_1} \cdots \partial \xi_n^{\mu_n}.$$

With the aid of a theorem of Littman [1] we obtain

THEOREM 3. Suppose that 1 , and let*l*be the smallest integer <math>>n |1/2-1/p|. Assume that for ξ real

(1)
$$P^{(\mu)}(\xi)/P(\xi) = O(|\xi|^{-a|\mu|})$$
 as $|\xi| \to \infty$, $|\mu| \leq l$,

(2)
$$1/P(\xi) = O(|\xi|^{-b})$$
 as $|\xi| \to \infty$

where b > (1-a)n |1/2-1/p|. Then $\lambda \in \rho(P_{0p})$ if and only if $P(\xi) \neq \lambda$ for real ξ .

Let $P(\xi)$ and $Q(\xi)$ be polynomials.

PROPOSITION 4. A necessary and sufficient condition that $D(P_{02}) \subseteq D(Q_{02})$ is that

$$|Q(\xi)| \leq C(|P(\xi)| + 1), \quad \xi \text{ real.}$$

PROPOSITION 5. If $\lambda \in \rho(P_{0p})$, then a necessary and sufficient condition that $D(P_{0p}) \subseteq D(Q_{0p})$ is that $Q(\xi) / [P(\xi) - \lambda]$ be a multiplier in L^p .

¹ Research supported in part by NSF Grant GP-6888.

THEOREM 6. Suppose that $1 and that <math>P(\xi)$ and $Q(\xi)$ satisfy

(3)
$$P^{(\mu)}(\xi)/P(\xi) = O(|\xi|^{-a|\mu|}) \quad as |\xi| \to \infty, \ each \ \mu,$$

$$(4) \qquad Q(\xi)/P(\xi) = O(|\xi|^{-\epsilon}) \qquad as |\xi| \to \infty$$

for ξ real, where $a \ge 0$ and c > (1-a)n |1/2 - 1/p|. If $\rho(P_0)$ is not empty, then $D(P_{0p}) \subseteq D(Q_{0p})$.

Let q(x) be a function defined in E^n , and let V be the set of those functions $u \in L^p$ such that $qu \in L^p$. Consider multiplication by q as an operator on L^p with domain V. This operator is closed; denote it by q. For $1 \le p < \infty$ and α real, set

$$M_{\alpha,p}(q) = \sup_{y} \int_{|x-y|<1} |q(x)|^{p} |x-y|^{\alpha} dx.$$

THEOREM 7. Suppose $P(\xi)$ satisfies (2) and

(5)
$$P^{(\mu)}(\xi)/P(\xi) = O(|\xi|^{-a|\mu|})$$
 as $|\xi| \to \infty$, $|\mu| \le n+1$,

with b > a + n - an. Let k_0 denote the smallest nonnegative integer satisfying $ak_0 > n - b$. Assume that $1 \le p < \infty$ and that q(x) is locally in L^p and that $M_{\alpha,p}(q) < \infty$ for some α satisfying $-n < \alpha < p(n-k_0) - n$. If $\rho(P_{0p})$ is not empty, then $D(P_{0p}) \subseteq D(q)$. If in addition

(6)
$$\int_{|x-y|<1} |q(x)|^p dx \to 0 \quad as |y| \to \infty,$$

then q is P_{0p} -compact.

THEOREM 8. Suppose $P(\xi)$ and $Q(\xi)$ satisfy (3) and (4) with $a \ge 0$ and c > a + n - an. Let j_0 be the smallest nonnegative integer such that $aj_0 > n - c$. Assume that $1 \le p < \infty$ and that q(x) is locally in L^p and $M_{\beta,p}(q) < \infty$ for some β satisfying $-n < \beta < p(n-j_0) - n$. Assume also that $\rho(P_{0p})$ is not empty. Then $D(P_{0p}) \subseteq D(qQ_{0p})$. If q also satisfies (6), then the operator qQ_{0p} is P_{0p} -compact.

REFERENCE

1. Walter Littman, Multipliers in L^p and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764–766.

Belfer Graduate School of Science of Yeshiva University, New York, New York 10033