PARTIAL DIFFERENTIAL OPERATORS ON $L^{p}\left(E^{n}\right)$

BY MARTIN SCHECHTER ${ }^{1}$
Communicated by C. B. Morrey, Jr., October 4, 1968

Let $P(\xi)$ be a polynomial in the variables $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$. If we replace ξ by $D=\left(D_{1}, \cdots, D_{n}\right)$, where $D_{j}=-i \partial / \partial x_{j}, 1 \leqq j \leqq n$, we obtain a constant-coefficient partial differential operator $P(D)$. Acting on the set C_{0}^{∞} of smooth functions with compact supports in Euclidean n-dimensional space E^{n}, the operator $P(D)$ is closable in $L^{p}=L^{p}\left(E^{n}\right)$ for $1 \leqq p \leqq \infty$. The purpose of this note is to describe some of the spectral properties of its closure $P_{0_{p}}$ in L^{p}.

Proposition 1. $\sigma\left(P_{02}\right)$ consists of the closure of the set of values taken on by $P(\xi)$ with ξ real.

Proposition 2. A point λ is in $\rho\left(P_{0 p}\right)$ if and only if $1 /[P(\xi)-\lambda]$ is a multiplier in L^{p} (cf. [1]).

In applying this proposition we shall let $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ be a multi-index of nonnegative integers. We set $|\mu|=\mu_{1}+\cdots+\mu_{n}$ and

$$
P^{(\mu)}(\xi)=\partial^{|\mu|} P(\xi) / \partial \xi_{1}^{\mu_{1}} \cdots \partial \xi_{n}^{\mu_{n}}
$$

With the aid of a theorem of Littman [1] we obtain
Theorem 3. Suppose that $1<p<\infty$, and let l be the smallest integer $>n|1 / 2-1 / p|$. Assume that for ξ real

$$
\begin{align*}
P^{(\mu)}(\xi) / P(\xi) & =O\left(|\xi|^{-a|\mu|}\right) & & \text { as }|\xi| \rightarrow \infty, \quad|\mu| \leqq l, \tag{1}\\
1 / P(\xi) & =O\left(|\xi|^{-b}\right) & & \text { as }|\xi| \rightarrow \infty, \tag{2}
\end{align*}
$$

where $b>(1-a) n|1 / 2-1 / p|$. Then $\lambda \in \rho\left(P_{0 p}\right)$ if and only if $P(\xi) \neq \lambda$ for real ξ.

Let $P(\xi)$ and $Q(\xi)$ be polynomials.
Proposition 4. A necessary and sufficient condition that $D\left(P_{02}\right)$ $\subseteq D\left(Q_{02}\right)$ is that

$$
|Q(\xi)| \leqq C(|P(\xi)|+1), \quad \xi \text { real. }
$$

Proposition 5. If $\lambda \in \rho\left(P_{0 p}\right)$, then a necessary and sufficient condition that $D\left(P_{0 p}\right) \subseteq D\left(Q_{0 p}\right)$ is that $Q(\xi) /[P(\xi)-\lambda]$ be a multiplier in L^{p}.

[^0]Theorem 6. Suppose that $1<p<\infty$ and that $P(\xi)$ and $Q(\xi)$ satisfy

$$
\begin{align*}
P^{(\mu)}(\xi) / P(\xi) & =O\left(|\xi|^{-a|\mu|}\right) & & \text { as }|\xi| \rightarrow \infty, \text { each } \mu \tag{3}\\
Q(\xi) / P(\xi) & =O\left(|\xi|^{-c}\right) & & \text { as }|\xi| \rightarrow \infty \tag{4}
\end{align*}
$$

for ξ real, where $a \geqq 0$ and $c>(1-a) n|1 / 2-1 / p|$. If $\rho\left(P_{0}\right)$ is not empty, then $D\left(P_{0_{p}}\right) \subseteq D\left(Q_{0 p}\right)$.

Let $q(x)$ be a function defined in E^{n}, and let V be the set of those functions $u \in L^{p}$ such that $q u \in L^{p}$. Consider multiplication by q as an operator on L^{p} with domain V. This operator is closed; denote it by q. For $1 \leqq p<\infty$ and α real, set

$$
M_{\alpha, p}(q)=\sup _{\nu} \int_{|x-y|<1}|q(x)| p|x-y|^{\alpha} d x
$$

Theorem 7. Suppose $P(\xi)$ satisfies (2) and

$$
\begin{equation*}
P^{(\mu)}(\xi) / P(\xi)=O\left(|\xi|^{-a|\mu|}\right) \quad \text { as }|\xi| \rightarrow \infty, \quad|\mu| \leqq n+1 \tag{5}
\end{equation*}
$$

with $b>a+n-a n$. Let k_{0} denote the smallest nonnegative integer satisfying $a k_{0}>n-b$. Assume that $1 \leqq p<\infty$ and that $q(x)$ is locally in L^{p} and that $M_{\alpha, p}(q)<\infty$ for some α satisfying $-n<\alpha<p\left(n-k_{0}\right)-n$. If $\rho\left(P_{0_{p}}\right)$ is not empty, then $D\left(P_{0 p}\right) \subseteq D(q)$. If in addition

$$
\begin{equation*}
\int_{|x-y|<1}|q(x)|^{p} d x \rightarrow 0 \quad \text { as }|y| \rightarrow \infty \tag{6}
\end{equation*}
$$

then q is $P_{0 p}$-compact.
Theorem 8. Suppose $P(\xi)$ and $Q(\xi)$ satisfy (3) and (4) with $a \geqq 0$ and $c>a+n-a n$. Let j_{0} be the smallest nonnegative integer such that ajo $>n-c$. Assume that $1 \leqq p<\infty$ and that $q(x)$ is locally in L^{p} and $M_{\beta, p}(q)<\infty$ for some β satisfying $-n<\beta<p\left(n-j_{0}\right)-n$. Assume also that $\rho\left(P_{0_{p}}\right)$ is not empty. Then $D\left(P_{0_{p}}\right) \subseteq D\left(q Q_{0 p}\right)$. If q also satisfies (6), then the operator $q Q_{0 p}$ is $P_{0_{p}}$-compact.

Reference

1. Walter Littman, Multipliers in L^{p} and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764-766.

Belfer Graduate School of Science of Yeshiva University, New York, New York 10033

[^0]: ${ }^{1}$ Research supported in part by NSF Grant GP-6888.

