# RINGS WITH TRANSFINITE LEFT DIVISION ALGORITHM 

BY ARUN VINAYAK JATEGAONKAR

Communicated by I. N. Herstein, September 30, 1968
The aim of this note is to describe the structure of a class of noncommutative rings which possess a variant of the Euclidean algorithm and indicate some properties of such rings.

All rings are associative and possess unity; subrings and homomorphisms are unitary. A domain is a (not necessarily commutative) ring without nonzero zero-divisors.

Let $R$ be a ring and $\phi$ be an ordinal-valued function defined on $R \sim(0)$. Put $\phi(0)=-\infty$ and let $(-\infty)+(-\infty)=\alpha+(-\infty)$ $=(-\infty)+\alpha=-\infty$ and $-\infty<\alpha$ for every ordinal $\alpha$ in the range of $\phi . \phi$ is called a transfinite left division algorithm on $R$ if, for all $a, b \in R$, the following conditions hold:
(1) $\phi(a-b) \leqq \max \{\phi(a), \phi(b)\}$,
(2) $\phi(a b)=\phi(b)+\phi(a)$,
(3) if $b \neq 0$, then there exist $q, r \in R$ such that $a=q b+r, \phi(r)<\phi(b)$.

Clearly, every ring with a transfinite left division algorithm is a left principal ideal domain.

We need some terminology and notations. Let $\rho$ be a mono-endomorphism of a domain $D$. A mapping $\delta: D \rightarrow D$ is called a $\rho$-derivation on $D$ if $\delta(a+b)=\delta(a)+\delta(b)$ and $\delta(a b)=\rho(a) \delta(b)+\delta(a) b$ hold for all $a, b \in D$.

Let $D$ be a subdomain of a domain $R$. Let $x$ be an element of $R$ such that every nonzero element $r \in R$ can be uniquely expressed as $\sum_{i=0}^{i} d_{i} x^{n_{i}}$ where $d_{i} \in D \sim(0)$ and $n_{i}$ are integers with $0 \leqq n_{0}<\cdots$ $<n_{s}$. Further, suppose that there exists a mono-endomorphism $\rho$ of $D$ and a $\rho$-derivation $\delta$ on $D$ such that $x d=\rho(d) x+\delta(d)$ for all $d \in D$. This situation is expressed symbolically as $R=D[x, \rho, \delta]$.

Let $R$ be a domain, $\alpha$ a nonzero ordinal and $\left\{R_{\beta}: \beta<\alpha\right\}$ a set of subdomains of $R$ such that
(1) $R=\bigcup_{\beta<\alpha} R_{\beta}$,
(2) if $0<\beta<\alpha$ then $R_{\beta}=\left(U_{\gamma<\beta} R_{\gamma}\right)\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}\right]$. We express this situation symbolically as $R=R_{0}\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0<\beta<\alpha\right]$. Thus, $U_{\gamma<\beta} R_{\gamma}$ $=R_{0}\left[x_{\gamma}, \rho_{\gamma}, \delta_{\gamma}: 0<\gamma<\beta\right]$. If all $\delta_{\beta}$ are zero derivations, we simplify the notation and put $R=R_{0}\left[x_{\beta}, \rho_{\beta}: 0<\beta<\alpha\right]$.

Theorem 1 (CF. [2], [4]). A ring $R$ has a transfinite left division algorithm if and only if $R=K\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0<\beta<\alpha\right]$, where $K$ is a skew
field and, for every $0<\beta<\alpha$,

$$
\rho_{\beta}\left(K\left[x_{\gamma}, \rho_{\gamma}, \delta_{\gamma}: 0<\gamma<\beta\right]\right) \subseteq K
$$

A construction is given to prove the following
Theorem 2. Let $k$ be an arbitrary skew field and $\alpha$ be an arbitrary nonzero ordinal. There exists a skew field $K$ containing $k$ as a subskew field and a ring $R=K\left[x_{\beta}, \rho_{\beta}: 0<\beta<\alpha\right]$ such that

$$
\rho_{\beta}\left(K\left[x_{\gamma}, \rho_{\gamma}: 0<\gamma<\beta\right]\right) \subseteq K
$$

For $\alpha=1$, any skew field would do. For $\alpha=2, K[x, i d]$ works. For $\alpha=3$, Theorem 2 already contains a counterexample to a conjecture of I. N. Herstein, stated as highly likely to be true [3, p. 75]. For other implications, see [5].

In the following two theorems, $K$ is a skew field and

$$
R=K\left[x_{\beta}, \rho_{\beta}: 0<\beta<\alpha\right]
$$

where, for $0<\beta<\alpha$,

$$
\rho_{\beta}\left(K\left[x_{\gamma}, \rho_{\gamma}: 0<\gamma<\beta\right]\right) \subseteq K
$$

Theorem 3 (CF. [1]). $R$ is a right primitive ring. $R$ is a left primitive ring if and only if $\alpha$ is a nonlimit ordinal.

THEOREM 4. Let $\Omega_{\lambda}$ be the first ordinal of cardinality $\boldsymbol{\aleph}_{\lambda}$. We have

$$
\begin{aligned}
\text { r. gl. } \operatorname{dim} R & =\infty & & \text { if } \alpha \geqq \Omega_{\omega}, \\
& \geqq n+2 & & \text { if } \alpha \geqq \Omega_{n}+1 \quad \text { where } n<\omega, \\
& \geqq 2 & & \text { if } \omega \geqq \alpha>2 .
\end{aligned}
$$

Using Theorems 2 and 4 it is shown that there exist rings with a transfinite left division algorithm having a prescribed right global dimension. Notice that the left homological dimension of any such ring is either 0 or 1 (cf. [ 6 and references given there]).

In a slightly different direction, we have
Theorem 5. A domain $R=D\left[x_{\beta}, \rho_{\beta}: 0<\beta<\alpha\right]$ is a left principal ideal domain if and only if $D$ is a left principal ideal domain and, for every $0<\beta<\alpha$,

$$
\rho_{\beta}\left(D\left[x_{\gamma}, \rho_{\gamma}: 0<\gamma<\beta\right] \sim(0)\right) \subseteq U(D)
$$

where $U(D)$ is the group of units of $D$.
Acknowledgement. The author is thankful to Professor N. Greenleaf for encouragement and advice.

## References

1. G. M. Bergman, A ring primitive on the right but not on the left, Proc. Amer. Math. Soc. 15 (1964), 473-475.
2. P. M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18-30.
3. I. N. Herstein, Topics in ring theory, Mathematics lecture notes, University of Chicago, Chicago, Ill., 1965.
4. N. Jacobson, A note on non-commutative polynomials, Ann. of Math. (2) 35 (1934), 209-210.
5. A. V. Jategaonkar, Left principal ideal domains, J. Algebra 8 (1968), 148-155.
6. L. W. Small, Hereditary rings, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 25-27.

University of Rochester, Rochester, New York 14627 and Cornell University, Ithaca, New York 14850

