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1. We announce here the answer, in part, to a question raised by 
Wall in §9 of [3], his basic paper on nonsimply connected surgery. 
To explain this, let X be a finite Poincaré complex of formal dimen­
sion w, and let v be a vector bundle over X of the fiber homotopy type 
of the "Spivak normal fibration." In §3 of [3] Wall defines a cobord-
ism group Qm(X, v) based on degree 1 maps <t>: M—>X and framings of 
T(M) ®<t>*y. In §5 (for m even) and §6 (for m odd) Wall defines a 
covariant functor Lm from finitely presented groups to abelian groups 
and a map 0:£lm(X, v)—>Lm(TiX) which describes the obstruction to 
surgering <j>: 0(a) = 0 if and only if a contains a simple homotopy 
equivalence QlM—^X. Lm and Lw+4 are the same by definition. To 
give a geometric expression to this periodicity, in §9 Wall defines a 
pairing 

Lm(w) ® tin -* Ln+mM 

by associating, to Nn and the map 0:ilf—>X, the product 0Xid: 
MXNn->XXNn. This makes L*(TT) into an fl*-module and Wall 
shows that the action of [CP2] is the periodicity identity Z,w = Z,m+4; 
Wall then conjectures that the action of [N] depends only on the 
index I(N). Here we show that this is true, at least for m odd and n 
even. 

THEOREM 1. For m odd and n = 2r, the pairing Lm(w) ®Q»-*£»+mOr) 
sends a ® [N]—*I(N)a for r even, a® [iV]—»0 for r odd. 

The case m — 2k appears to be easier to handle, since the obstruc­
tion is the intersection form, which is just the ®-product of the form 
on M and the form on N, and is homologically defined. The self inter­
section form does introduce a complication, at least if k is odd. In any 
case we concentrate here on m = 2k + l. 

2. We freely use here terms and notation introduced by Wall in 
[3, §5, §6 mostly]. Throughout w will be a fixed finitely presented 
group and A = Z[TT]. Let (ÜT, X, /A) be a standard kernel, as in Wall's 
§5. So K is a free A-module (of finite dimension) and X = 5 i©5 2 

where S\ has a specified basis eif • • • , ep and S2 has basis ƒ1, • • • , ƒ,. 
X is a ( —l)*-conjugate symmetric quadratic form on K (briefly, 
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a ( — l)*-form), where the m of Theorem 1 is m = 2fe+l. The self inter­
section function n:K-->A/{p—• ( — l)*p} is 0 on Si and 52. X is given by 
\(eit ƒ,) = ( — l)*X(/y, £»•) = 8,7, and X = 0 on other base pairs. 

Let Ç b e a unimodular bilinear integral-valued form on the free 
(finite rank) Z-module H, ( —l)r-symmetric, # = 2r, n as in Theorem 
1. Then K®ZH is also a A-module, so let X®(?, fi®Q be the forms on 
it defined by 

(X ® Q)(xx ® hu x2 ® h2) « (-l)*A(*i f x2)Q(hly h2) 

<M ® Q)(x ® h) = (-1)*>*(*)Ö(*, A). 

LEMMA. K®ZH with \®Q, fx®Qis a ( — l)*+r-feerweZ w#fe subkernels 
Si®zH and S2®ZH. 

The only ambiguity in identifying K®ZH with the standard kernel 
lies in the choice of basis of Si®zH; we choose {ei®hj} where 
hi, • • • , hp is a basis for JÏ. The simple class of this basis does not 
depend on the basis hu • • • , hp, so we ignore this ambiguity. This 
lemma is proved using Lemma 5.3 of [3]. 

Now suppose a:K-+K is a simple isomorphism of the kernel K 
(preserving X, fx). Then <f>®id:K®zH—*K®zH is also a simple iso­
morphism. 

THEOREM 2. The map ofi^>a®id induces a homomorphism p(Q) 
= Lm(7r)—>Z/m+nW which is [a]—>I(Q) [a] if r is e^en (n = 2r) awd is 
[a]»-K) i/* r is odd, where I(Q) = index (Q). 

We first observe that o»-»a:®id induces a map on the stable group, 
/5(Q):SJ7(A)->Lm+n(7r), and this map is additive: p(Qi®Q2) = p((?i) 
+ P ( Ô 0 - Furthermore, if Qi is equivalent to Q2l P((?I)=P((?2)- For r 
even this reduces the proof to the verification of two special cases: 
first, H^Z and Q has matrix (1) and second, H^Z®Z and Q has 
matrix 

C-0-
In the first case K®ZH=K and a®id is carried to a, so /5((?)(a0 =<*. 
In the second case, let hu h* be the basis of the matrix representation. 
Then the submodule with basis 

{ei ® hi + et ® h2,fj ® h + ƒ,- ® A2} 1 ^ i , i â v 

is a subkernel, although not one of the Si®zH—one checks immedi­
ately that X® Q, M® 0 vanish on it. This subkernel is invariant under 
a®id, and it follows that [ a ® i d ] = 0 in Ln+m(7r), which verifies the 
second case. 
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For r odd, it is enough to check p((?)=0 for H^ZQZ, Q with 
matrix 

i: :> 
Here we observe that 

{*< ® hl9fj ® hi} 1 ^ i,j â v 

is an invariant subkernel, so again p(Q) = 0. 

3. Here we follow Wall [3, §6]. Suppose X is a connected finite 
Poincaré complex of formal dimension m = (2k + l)^5 and p is a 
Spivak normal bundle, as in §1. Let (M, <j>% F) represent an element of 
Qm(X, p), so we may suppose <t>:M—*X has degree 1 and F is a stable 
framing of T(M) ®<l>*p. We omit mention of a boundary, which is to 
be mapped by a simple homotopy equivalence throughout. We can 
suppose <t> is ^-connected and U is the union of the images of disjoint 
embeddings of SkXDk+1, each assigned a path connecting it to the 
base point, representing generators of 7r*+i(0) =i£jb(M, A), A = Z[wiX]. 
We may suppose that X has only one w-cell Dm so there is a Poincaré 
pair (X0, S"*""1), XoKJDm=X and 0 induces a map of Poincaré triads, 
Af0 = i l f - In t 17, 

4>: (M9 Mo, U) - • (X; X0> D"). 

With this set-up, Wall shows that the obstruction to surgering <f> to 
a simple homotopy equivalence is represented by the pair of sub-
kernels of the kernel Kk(dU) which are the images in 

Kk+1(M0, dU) -> Kk(dU) *- KH1(U9 dû). 

The homology groups Kq are with coefficients A. In other words, 
if a£SU(A) is an automorphism of Kk(dU) which carries the right-
hand subkernel to the left, then [a]£Z,m(xiX) is 0 iff (M, </>, F) is 
cobordant to (M', 4>\ F'), <f>' a simple homotopy equivalence. In §7 
this is generalised by Wall in such a way that M o, U appear in com­
pletely symmetric roles. 

Now let N be a smooth n-dimensional manifold, and wi(N)^l. 
Then we have <£Xid:MXN—>XXN, and if PN is a normal bundle of 
N, then there is a unique framing FN of T(MXN)®(<t>Xid)*(pXPtr), 
and we have an element 

(MXN,<t>X id, FN) E Ö«+»(X XN,PX VNI 
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This determines the pairing Lm(ir) ®Q»—>Zr»+w(ir) mentioned above, 
defined in §9 of [3]. 

THEOREM 3. For m=*2k+ltn=*2r,the surgery obstruction of (MXN, 
0Xid, FN) is represented by the subkernel pair 

Kk+1(M0,dU)®zHr(N) 

-> Kk(dU) ®z Hr(N) <- KK+i(U, dU) ®z Hr(N) 

with intersection forms \®Q, fJL®Q on the kernel Kk(dU)®zHr(N)t 

where X, fx are the forms on Kk(dU) and Q is the intersection pairing on 
Hr(N) (modulo torsion throughout). 

Theorem 1 now follows from Theorem 2 and Theorem 3, together 
with the fact that every element of Lm(7r, X) can be realised as an 
obstruction. 

We can divide MXN into two pieces, MXN = MQXNKJUXN, 
and this defines a pair of subkernels exactly as stated in the theorem: 

Kk+r+i(MoXN, dUXN) -+ Kk+r(dUXN) <- üT*+r+1(tf X# , dUXN) 

II? II? II? 
Kk+1(M0, dU)®zHr(N)-*Kk(dU)®zHr(N)*-Kk+1(U, dU)®zHr(N). 

If we could identify this subkernel pair as the obstruction we would 
be done, and by Lemma 7.2 of [3] we could do so if <f> were &+r-con-
nected on M0XN, dUXN and UXN and k+r+1 -connected on 
(MoXN, dUXN), (UXN, dUXN), but of course these conditions 
are not satisfied in general. So the proof consists of showing that these 
spaces can be surgered in such a way as to make them highly con­
nected without disturbing the subkernel pair or the intersection form. 
Particular care is required to insure that the basis class is not changed 
either. The details of this proof will be given elsewhere. 
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