A NOTE ON WEAKLY COMPLETE ALGEBRAS¹

BY WILLIAM FULTON

Communicated by Murray Gerstenhaber, October 23, 1968

Fix a commutative noetherian ring R with unit and an ideal I in R. P. Monsky and G. Washnitzer have developed the notion of a weakly complete finitely generated algebra over (R, I) [1], [2]; we include a definition in §2. They have used these "w.c.f.g. algebras" to construct a p-adic De Rahm cohomology for nonsingular varieties defined over fields of characteristic p [1]. It is important for their theory that w.c.f.g. algebras are noetherian; we prove this fact here. Our proof attempts to follow the well-known proof that power series rings over R are noetherian. At one point we need a general lemma concerning modules over polynomial rings; §1 deals with this.

1. Let $R' = R[X_1, \dots, X_n]$. The degree of a polynomial $f \in R'$ is denoted by ∂f . If S is a finitely generated free R'-module with a fixed basis, identify S with $(R')^m$, and for $f = (f_1, \dots, f_m) \in S$, define $\partial f = \text{Max } \partial f_i$.

LEMMA. Let M be a submodule of S, S as above. Then M has a finite number of generators g_{α} so that any $g \in M$ may be written $g = \sum a_{\alpha}g_{\alpha}$ with $a_{\alpha} \in R'$ and $\partial a_{\alpha} \leq \partial g - \partial g_{\alpha}$.

PROOF. Let $R^* = R[X_0, X_1, \dots, X_n]$, $S^* = (R^*)^m$. For each $f = (f_1, \dots, f_m) \in S$, with $\partial f = d$, write $f^* = (f_1^*, \dots, f_m^*) \in S^*$, where $f_i^* = X_0^d f_i(X_1/X_0, \dots, X_n/X_0)$. Let M^* be the (homogeneous) submodule of S^* generated over R^* by $\{g^* | g \in M\}$. For the desired generators take any finite set of $g_\alpha \in M$ so that the g_α^* generate M^* . In fact, if $g \in M$, we may write $g^* = \sum A_\alpha g_\alpha^*$, and by homogeneity we may assume $A_\alpha \in R^*$ is of degree $= \partial g^* - \partial g_\alpha^* = \partial g - \partial g_\alpha$. Replacing X_0 by 1 in this equation shows that $g = \sum a_\alpha g_\alpha$, $a_\alpha = A_\alpha(1, X_1, \dots, X_n)$, and $\partial a_\alpha \leq \partial A_\alpha = \partial g - \partial g_\alpha$.

2. DEFINITION [2, §2.1]. An *R*-algebra A is a w.c.f.g. algebra over (R, I) if it satisfies the following two conditions:

(i) $\bigcap_{i=0}^{\infty} I^i A = 0$. We therefore identify A with its image under the natural map $A \rightarrow A^{\infty} = \text{proj } \lim_{i \to \infty} A/I^i A$.

(ii) There are elements x_1, \dots, x_n in A so that for any $y \in A$ there are polynomials $p_d(X_1, \dots, X_n) \in I^d[X_1, \dots, X_n]$ and a

¹ Research partially supported by an NSF Graduate Fellowship and NSF Grant GP-4028.

WILLIAM FULTON

constant $\lambda > 0$ with $\partial p_d \leq \lambda(d+1)$ and $y = \sum_{d=0}^{\infty} p_d(x_1, \cdots, x_n)$.

THEOREM. A w.c.f.g. algebra over (R, I) is noetherian.

PROOF. With A, x_1, \dots, x_n as in the definition, let R' $=R[X_1, \cdots, X_n]$. Take any generators z_1, \cdots, z_m for the ideal I, and form the power series ring $R'[[Z_1, \dots, Z_m]]$. Denote by $S^{(d)}$ the elements of $R'[[Z_1, \dots, Z_m]]$ which are homogeneous of degree d in Z_1, \dots, Z_m . $S^{(d)}$ is a free R'-module with the natural base of monomials in Z_1, \dots, Z_m . For $f^{(d)} \in S^{(d)}$ the degree $\partial f^{(d)}$ is defined with respect to this basis, as in §1. Each $F \in R'[[Z_1, \dots, Z_m]]$ has a unique representation $F = \sum_{d=0}^{\infty} f^{(d)}$ with $f^{(d)} \in S^{(d)}$; we will use this notation without comment.

Let $R'' = \left\{ \sum_{j \in \mathcal{R}'} \left[\left[Z_1, \cdots, Z_m \right] \right] \middle| \partial f^{(d)} \leq \lambda(d+1) \text{ for some} \right. \right\}$ constant λ }. Sending X_i to x_i and Z_i to z_i defines a homomorphism from R'' onto A, so it will suffice to prove that R'' is noetherian.

Suppose, then, that J is an ideal of R''. Let

$$M^{(d)} = \{ f^{(d)} \in S^{(d)} \mid \sum_{j=d}^{\infty} f^{(j)} \in J \text{ for some } f^{(d+1)}, \cdots \},$$

and let M be the homogeneous ideal of $R'[Z_1, \dots, Z_m]$ generated by all the $M^{(d_i)}$. Take a finite number of generators $h_i \in M^{(d_i)}$ for the ideal M, and choose an integer N greater than all the d_i . For each k < N take a finite number of

$$Q_{j,k} = \sum_{d=k}^{\infty} q_{j,k}^{(d)} \in J$$

whose leading terms $q_{j,k}^{(k)}$ generate $M^{(k)}$ as an R'-module. Likewise take $Q_j = \sum_{d=N}^{\infty} q_j^{(d)} \in J$ so that the $q_j^{(N)}$ generate $M^{(N)}$: here, however, apply the lemma of §1 to $M^{(N)} \subset S^{(N)}$, and choose the $q_j^{(N)}$ to satisfy the conditions of that lemma. By our choice of N, $M^{(d)} = S^{(d-N)} M^{(N)}$ for $d \ge N$; from this and the lemma we deduce:

(*) Any
$$g^{(d)} \in M^{(d)}, d \ge N$$
, may be written in the form $g^{(d)} = \sum a_j q_j^{(N)}$ with $a_j \in S^{(d-N)}$ and $\partial a_j \le \partial g^{(d)}$.

We can now finish the proof by showing that $\{Q_{j,k}, Q_j\}$ generates J. Let $G \in J$. By first subtracting an R["]-linear combination of the $Q_{j,k}$, we may assume that $G = \sum_{d=N}^{\infty} g^{(d)}$. We must find $T_j = \sum_{d=0}^{\infty} t_j^{(d)}$ and a constant λ so that $G = \sum T_j Q_j$ and $\partial t_j^{(d)} \leq \lambda(d+1)$ for all j, d. Choose any $t_j^{(0)}$ such that $g^{(N)} = \sum t_j^{(0)} g_j^{(N)}$. Take μ so large that $\partial t_j^{(0)} \leq \mu$ for all j, and so that $\partial g_j^{(N+d)} \leq \mu(d+1)$ for all j, d. Let $\lambda = 2\mu$. Suppose that $t_j^{(0)}, \dots, t_j^{(d-1)}$ have been found satisfying $\partial t_j^{(k)}$.

[May

592

$$\begin{split} & \leq \lambda(k+1) \text{ and } g^{(N+k)} = \sum_{j} \sum_{i=0}^{k} t_{j}^{(n)} q_{j}^{(n+k-i)} \text{ for } 0 \leq k \leq d-1. \text{ By (*)} \\ & \text{we can find } t_{j}^{(d)} \text{ so that } g^{(N+d)} - \sum_{j} \sum_{i=0}^{d-1} t_{j}^{(n)} q_{j}^{(N+d-i)} = \sum_{j} t_{j}^{(d)} q_{j}^{(N)} \text{ and} \\ & \partial t_{j}^{(d)} \leq \text{Max } \left\{ \partial g^{(N+d)}, \ \partial (t_{h}^{(b)}) + \partial (q_{h}^{(N+d-i)}); \ 1 \leq i \leq d-1, \ \text{all } h \right\}. \text{ Fortunately this last number is } \leq \lambda(d+1), \text{ and so, defining the } t_{j}^{(d)} \text{ inductively, the required } T_{j} \text{ are found.} \end{split}$$

REMARK. Other "weakly complete" algebras could be defined by specifying less restrictive growth conditions. For example, the last condition of the definition could be changed to read: $\partial p_d \leq \lambda(d^{\rho}+1)$, where ρ is some real number ≥ 1 , either fixed or depending on the element y. The above proof shows that all of these algebras are noetherian.

BIBLIOGRAPHY

1. P. Monsky and G. Washnitzer, The construction of formal cohomology sheaves, Proc. Nat. Acad. Sci. U. S. A. 52 (1964), 1511-1514.

2. ——, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181-217.

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540 AND BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

1969)