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Introduction. Let (G; K\t K%) be a compact symmetric triad in the 
sense of [3], G simply connected. The natural action of Ki on G/K% 
is of interest because it is variationally complete [5]. In [3] we intro
duced certain "affine root systems" in order to describe the orbits of 
this ifi-action, and in the piesent note we wish to announce the classi
fication [4] of these systems and to indicate further applications to 
the theory of symmetric spaces. 

1. Preliminaries. Let g be a complex semisimple Lie algebra, v an 
automorphism of g, and set g„ = {-X"Eg: v(X) = X}. The following is 
due essentially to de Siebenthal [7] (cf. also [4, §7]). 

(1.1) PROPOSITION. If fy,Cg* is a Cartan subalgebra, there is a unique 
Car tan subalgebra §Cg such that §PC.§' There is a finite family a 
~ {f • %—*C/iZ\ of affine functional and an orthogonal direct sum 
decomposition 

8 = & © Z & > f G a 

where dim(gf) = 1 and 

v o exp(ad(Z)) | gf = exp(27rf (Z)), 

for all Z&)w and f £cr. f (0) is pure imaginary for all f G ci. 

h = V®iV where V is the real subspace on which the "linear parts" 
Ù>=Ù>— œ(0) of the elements co£a are real. One defines 

% = {&\ F - ico(0) :wGa} 

interpreted as a set of affine functionals V-+R/Z. This is the system 
defined by de Siebenthal. 

g = g*©*g* where g* is the compact real form of g. Let Si and s2 

be involutive automorphisms of g*, ai and <r2 the extensions of these to 
anti-involutions of g. There correspond symmetric subalgebras ïi, f2 of 
g* and noncompact real forms gi, g2 of g. 

Let mCg* be the simultaneous —1 eigenspace of Si and s2. Set 
p = <ri<T2 and choose % as in (1.1), but such that %C\{ya®ivcC) is maxi-
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mal abelian in m®im. Let cr denote <ri| g,=02| fl*. Note that <r(V) =» V 
and that cr induces a permutation <r* of SI. The pair (SI, a*) will be 
called the affine a-system associated to (g; gif g2) (or to (g*; ïi, f2)). 

If we let V" denote the +1 eigenspace of a\ V and 8Ï~ the set of 
nonconstant restrictions of elements of 81 to V~, we obtain the affine 
root system of [3]. 

2. Equivalences and classification. One defines isomorphism 
(SI, o*)^(SÏ', trj) via linear isometries </>: V-+V' carrying 3ï'-»Sl and 
such that 0O(T=(r'o^ and one similarly defines affine equivalence 
(St, <r*)~(St', o*') via affine isometries </>: V—*V' with ^O(r=(r'o0. 
Isomorphism (g; glt g2)==(g; g/, g2 ) is defined via an automorphism 0 
of g leaving g* invariant such that fl(gy) = g/, j = 1, 2. Affine equivalence 
(g; gi» g2)~(g; g/» g27) means that there are inner automorphisms fi, 
f2 of g leaving g* invariant such that (g; gx, g2)=(g; fi(g/), £2^2')). 

(2.1) THEOREM. Let (g; gi, g2) and (g; g/, g2 ) Aave respective affine 
(T-systems (St, cr*) and (St', cr*'). Then (g; glf g2)=(g; Bi » 62/)=^(8l, 0*) 
=(%', <ri)==>(g; Sit Ô2)=(g; g£>a), G*<2)) /<w a suitable permutation w of 
{1,2}. Likewise, (g; gi, g2)~(g; gi, g2 )=K3t, <r*)~(8t', 0*')=Kg; gi, g2) 
~(g;giu)>g*<2))-

The affine <r-systems for all triads (g; gi, g2) have been classified up 
to affine equivalence [4]. 

3. Topological applications. Consider the action of K\ on GIK2 as 
in the introduction. Let TQG/K2 be the flat geodesic torus described 
in [3] and [6]. Then T meets orthogonally every üTi-orbit and V~ 
identifies in a natural way with the universal covering of T. The 
system ST"" describes the singular set in T relative to the üTi-action 
[3] and enables us to apply the theory of [2]. If NQG/K2 is a K\-
orbit, Theorem 3.1 of [3] shows that the space ti(G/K2; x, N) of paths 
on G/K2 from the point x to the submanifold N has no torsion in 
homology iff a certain "regularity" condition [3, p. 236] is satisfied 
by 3f~. As a result of [4] we can list up to affine equivalence (and a 
permutation of {l, 2}) the triads (g*; ïi, ï2) for which St~ is regular. 
For g* simple these are given in the following list. 

Type A. (Ar;AqXA^^iXRtAkXAr^^XR)t (A2r-i;DnA2r-.2XR), 
XR), (A,r-i; Cr, Cr), (A»-!', Cr, DT), ( i i M ; Cr, 

AiXAtr-i-tXR), (Atr-1-, Dr, AtXAtr-lXR). 
Type B. (Br', Dr, Dr), (Br; Dr, BtXDr-<). 
Type C. (CT; CqXCT-„ C*XCr_»), (Cr; CtXCr-q, Ar-iXR). 
Type D. (Dr; Br-U BT-i), (Dr; Ar-iXR, AT-iXR), (Dr; DT-iXR, 

D*XDr-») where r>k±l, (!>*+*; PPXX>,+t. Ar-iXR) where k^O, 
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(Dr; Br-i, DkXDr-k) where r>k^lt (Dr; A^XR, £*X£ r-*-i) where 
r > f c ^ l , (DA; BZ, <O(53)), (D4\ BZ, œ(BiXB2)). Here w is the triality 
automorphism of Z)4; Bz and B1XB2 are standardly imbedded in D4. 

Type E. (£6; A X i ? , D6XR), (E,; i?4, F4), (£e; ^4, C4), (£6; AX2?, 
i l iX i l i ) , (£•; ^4, AX-ff), (£.; F4 | A*XA0, (E7; £eXi?, £ 6 XiO, 
(£7; 4 7 f £ 6 X £ ) , (£7; £ 6 Xi?, A X i i ) . 

Type F. (F,; BA, B4), (F4; B4, CZXAJ. 

4. Commuting involutions. Following Hermann [6] one asks 
whether there is an inner automorphism f of g leaving g* invariant 
such that fcTif""1 commutes with <r2. Using (1.1) and (2.1) one can 
prove the answer is affirmative iff (SI, a**)'—'(St7, 0*') where 0£9I ' 
implies 0(0) = 0 or \. 

As Hermann has shown [6, Proposition 2.1], the existence of totally 
geodesic 2£i-orbits in G/K2 is completely bound up with the solutions 
f to this problem. The system (SÏ, a*) somewhat clarifies this situation 
as we now indicate. 

Let p: V~—>T be the natural covering map. Supposing that the 
commuting involutions problem has a solution, we lose no generality 
in assuming 0*1̂ 2 = <T2(TI (hence SiS2 = S2Si). Then if A is the lattice 
{XE V-. <f>(X) = 0 or i all 0G2Ï}, we have the following. 

(4.1) PROPOSITION. S = p (A) is the subset of T consisting of the points 
whose Ki-orbits are totally geodesic in G/K2. 

The assumption ^ 2 = 525i implies that Si defines an involutive 
isometry (again called Si) of G/K2. This situation is quite general. 

(4.2) PROPOSITION. Let G be simply connected. Then every involutive 
isometry of G/K2 having nonempty fixed point set is conjugate (in the 
isometry group) to one produced by an involutive automorphism sx of G 
commuting with s2. 

We explicitly identify the fixed point set of the involution si in 
G/K2. For each #£2l~ , let $ be the linear part as in §1 and define 
ft^E V" by h<f>±Ker(<j>) and <£(ft0) = 2 . The lattice Ae spanned by these 
vectors h<f> is exactly p^1({K2}). 

(4.3) THEOREM. Again assume G simply connected and siS2 = S2Si. 
Let A* = JA, and 2* = £(A*). Then S*CS and the fixed point set of Si 
in G/Kt is exactly the union of the Ki-orbits of the elements of 2*. 

5. Pseudo-Riemannian symmetric spaces. The explicit solutions 
of the commuting involutions problem make possible a classification 
of the isomorphism classes of those (g; gi, g2) for which o i o ^ o ^ i . For 
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each of these (gi, 81^82) and (gi, 81^82) are dual pseudo-Riemannian 
symmetric pairs [ l ] . All pseudo-Riemannian pairs may be obtained 
in this way; hence [4] contains implicitly the classification [ l ] . 

Inthefol lowing,^={0ea:0(O)==O}and8î-={0G2t--:0(O)= 5O}. 
These are identified as subsets of the dual spaces V* and (V")* re
spectively. For other terminology in the theorem below, cf. [ l ] . 

(5.1) THEOREM. Let 8 be simple, c^^czVi. The corresponding dual 
symmetric pairs are either both reducible or both irreducible. They are 
reducible iff dt~ spans a subspace of (V"")* of codimension one, and in 
this case the dual pairs are mutually isomorphic. They are irreducible 
iff 9Î~~ spans (T™)*. The dual symmetric pairs are either both complex 
symmetric or both fail to be so. They are complex symmetric iff 9t spans 
a subspace of V* of codimension one and 9t"~ spans (V~)*. In this case 
the dual pairs are actually semikahlerian. 

These facts are proven without classification. 
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