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Let J denote the unit interval, S—IXI the unit square; Cj and 
Cs the class of all subsets of I and 6, respectively. By Cj X Cj is 
meant the or-algebra on S generated by rectangles with sides in C/. 
The purpose of this note is to prove the following theorem (which 
settles a problem of S. M. Ulam) and observe some of its conse­
quences. Without explicit mention, the axiom of choice has been assumed 
throughout this paper. CH stands for the continuum hypothesis. 

THEOREM 1. If CH is valid, then CrXCi = C5. 

PROOF. First, observe that if ƒ is any function defined on a subset 
of J into I then its graph 

G = {(#, y): # £ Domain oîf,f(x) — y] 

is in Ci X Ci. For this it suffices to verify that 
oo n 

G - fi Sn; where Sn « U {AnkXBnk}, 

Ank = {x G Domain/: (k - l)/n ^ f(x) < k/n}, 

Bnk = {y G Range/: (k - l)/n £y< k/n). 

(For k = »; include the right end point as well.) 
Second, if BQS be such that every vertical section is at most 

countable then BÇZCIXCI. This follows by realizing B as countable 
union of graphs. 

Third, if BQS is such that every horizontal section is at most 
countable then B G Ci X Cr. 

Fourth, S^XKJY where every vertical section of X is at most 
countable and every horizontal section of Y is at most countable [4]. 
This can be done by realizing I as the set of ordinals less than the 
first uncountable ordinal (by using CH) and then taking the portions 
below and not below the diagonal. 

Finally, if BQS then by previous remarks BC\Xy BC\Y are in 
CiXCi to complete the proof. 

Let Z be a set of cardinality Nit the first uncountable cardinal. An 
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obvious modification of the above theorem gives us 

THEOREM 2. The product of discrete <r-algebras on Z is the discrete 
cf-algebra on ZXZ. Consequently if A QS be such that Card (-4) £*Nif 

then AECiXCr. 

Clearly, Theorem 1 is a consequence of the above theorem together 
with CH. 

THEOREM 3. Let {Za, aGÎ"} be any collection of subsets {possibly 
empty also) of Z where Card (T) = iVi. Then there is a separable (count-
ably generated and containing all singletons) a-algebra on Z containing 
the given collection. 

PROOF. There is no loss in taking T=Z, as we do. Put 

A . U {{a} XZa}. 
a€Z 

By Theorem 2, A is in the product of discrete ^--algebras on Z and 
consequently it is in the cr-algebra generated by a countable number 
of rectangles, say, {AiXBi9 i^l}. Any separable <r-algebra on Z 
(clearly there are such) containing {Ai, B^ i â l } will suffice for our 
purpose. 

As an immediate consequence of the above theorem we have the 
following which gives an affirmative answer to a question of S. M. 
Ulam [ó], and disproves a conjecture of the author [2], 

THEOREM 4. Let CH be valid. Then there is a separable a-algebra on I 
containing all the analytic sets of I. In fact there is one such containing 
all projective [3] sets of I. 

In the terminology of Szpilrajn-Marczewski [ l] the above theorem 
can be restated as 

THEOREM 5. Let CH be valid. Then there is a one to one transforma­
tion 4> of I into J, transforming each set projective in I into a set Borel 
in 0(7). 

We now formulate a generalization of the notion of projective sets 
and solve a related problem of Ulam [7]. Let C={AP; pÇzT} be a 
collection of subsets of I where Card (T) =c. The projections on / of 
sets of the <r-algebra on S over the rectangles ApXAq with sides in C, 
constitute Pi, the first projective class. Having defined P« for 
«<7<S2 we define P 7 as the projections on I of the sets of the <r-
algebra on 5, over the rectangles with sides in the previous projec­
tive classes. These are called generalized projective sets. Clearly one 
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need not proceed after the first uncountable ordinal Q. Since each Pa 

has cardinality not greater than c, we have 

THEOREM 6. Let CH be valid. Then there is a separable <r-algebra on 
I containing all its generalized projective sets over any fixed class C, where 
of course Card (C) £c. 

The author [2] has proved the following theorem, elsewhere. 

THEOREM 7. Let L be any class of subsets of I which are measurable 
w.r.t. a fixed nonatomic probability measure on the Borel subsets of I. 
Then L does not contain any separable a-algebra including all analytic 
subsets of I. 

In view of Theorems 7 and 4, one has 

THEOREM 8. Let CH be valid. Fix any separable a-algebra on I , say 
Ao, containing all the analytic subsets of I. For every nonatomic prob­
ability measure on the Borel field of I , there is at least one nonmeasurable 
set in A0. 

THEOREM 9. There exists a separable a-algebra on Z which supports 
no continuous probability measure. 

PROOF. Observe, following Ulam [5], that with each finite ordinal 
n and countable ordinal a we can associate a subset K(n, a) of Z 
satisfying the following: 

(i) for each fixed a, Un K(nt a) is a cocountable subset of Z, and 
(ii) for each fixed w, {K(n, a):a countable ordinal} is a disjoint 

family. 
Take any separable cr-algebra on Z containing all these sets (as­

sured by Theorem 3). The argument of Ulam [S] now completes the 
proof. 

If CH is assumed, the above theorem says that on I there is a 
separable <r-algebra which does not support a continuous probability 
measure. If one wishes, this <r-algebra can be taken to contain all 
Borel sets or all analytic subsets of I. 

The author expresses his appreciation and thanks to Dr. Ashok 
Maitra for the inspiring discussions and useful comments. Thanks are 
also due to him for many suggestions on an earlier version of this 
paper. 
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ON SPHERE-BUNDLES. I 

BY I. M. JAMES1 

Communicated by P. E. Thomas, November 19, 1968 

Let E be an (n — l)-sphere bundle over a base space B, with the 
orthogonal group as structural group. By an almost-complex structure 
on E we mean a reduction of the structural group to the unitary 
group. By an A-structure on £ I mean a fibre-preserving map/: E—>E 
such that fx is orthogonal to x for all xÇzE. For example, an almost-
complex structure determines such a map through the action2 of the 
scalar / such that J 2 = — 1. Note that n must be even if an ^-struc­
ture exists. When E is trivial this necessary condition is also sufficient. 

I describe E as homotopy-symmetric if lÇ=u:E—>E, by a fibre-
preserving homotopy, where u denotes the antipodal map given by 
ux = — x. This condition also implies that n is even. An A -structure 
f on E determines a fibre-preserving homotopy ft ( / £ / = [0, l]), 
where ftx = x cos rt+f(x) sin irt, and so E is homotopy-symmetric. I 
assert that the converse holds in the stable range,3 so that we have 

THEOREM 1. Let B be a finite complex such that dim B ^ w—4. Then 
E admits an A-structure if and only if E is homotopy-symmetric. 

A proof can be given as follows. Let p: E—>B denote the fibration. 
Let E' denote the space of pairs (x, y), where x, yÇîE, such that 
px = py and such that x is orthogonal to y. We fibre E' over E with 
projection p' given by p'(x, y) =#. An -4-structure ƒ on E determines 
a cross-section ƒ': E—»E', where ƒ'# = (x, fx), and conversely a cross-
section determines an A -structure. Let E" denote the space of paths 
X in E such that p\ is stationary in B and such that X(0) =X(1). We 

1 Research partly supported by the National Science Foundation. 
8 We recall that the centre of the structural group acts on the bundle. 
3 The stable range, in relation to this problem, is not quite as extensive as the 

stable range of ordinary theory. 


