ON THE EXTENSION OF LIPSCHITZ, LIPSCHITZHÖLDER CONTINUOUS, AND MONOTONE FUNCTIONS ${ }^{1}$

BY GEORGE J. MINTY

Communicated by Gian-Carlo Rota, September 22, 1969

1. Introduction. The well-known theorem of Kirszbraun [9], [14] asserts that a Lipschitz function from R^{n} to itself, with domain a finite point-set, can be extended to a larger domain including any arbitrarily chosen point. (The Euclidean norm is essential; see Schönbeck [16], Grünbaum [8].) This theorem was rediscovered by Valentine [17] using different methods. The writer [12] proved the same fact for a "monotone" function, and Grünbaum [9] combined these two theorems into one. A further improvement to the writer's theorem was given by Debrunner and Flor [6], who showed that the desired new functional value could always be chosen in the convex hull of the given functional values; several different proofs of this fact have now been given (see [14], [3]). An easy consequence of Kirszbraun's theorem is that a Lipschitz function in Hilbert space with maximal domain is everywhere-defined (see [11], [13]).

It was shown by S . Banach [1] that a real-valued function defined on a subset of a metric space and satisfying $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|$ $\leqq\left[\delta\left(y_{1}, y_{2}\right)\right]^{\alpha}$, with $0<\alpha \leqq 1$ (we call this "Lipschitz-Hölder continuity"), can be extended to the whole metric space so as to satisfy the same inequality. Banach's theorem was rediscovered by Czipszer and Gehér [4] in case $\alpha=1$ (but note that Banach's result follows, since $\left[\delta\left(y_{1}, y_{2}\right)\right]^{\alpha}$ is another metric if $\left.\alpha \leqq 1\right)$. For a general review of the above subjects, see the article of Danzer, Grünbaum, and Klee [5]; see also [7].

In this paper, we give a unified method for proving all the above results, and also new theorems, the most striking of which is the following generalization of the Kirszbraun and Banach theorems:

Theorem 1. Let H be a Hilbert space, M a metric space, $D \subset M$. Suppose $f: D \rightarrow H$ satisfies $\left\|f\left(y_{1}\right)-f\left(y_{2}\right)\right\| \leqq\left[\delta\left(y_{1}, y_{2}\right)\right]^{\alpha}(0<\alpha \leqq 1)$. Then there exists an extension of f to all of M satisfying the same inequality, if either
(i) $\alpha \leqq \frac{1}{2}$, or

[^0](ii) M is an inner product space, with metric given by $k^{1 / \alpha}\left\|y_{1}-y_{2}\right\|$, where $k>0$.

Moreover, the extension can be performed so that the range of the extension lies in the closed convex hull of the range of f; thus

$$
\|f\|_{\alpha}=\sup _{\nu}\|f(y)\|+\sup _{\nu_{1} \neq \nu_{2}} \frac{\left\|f\left(y_{1}\right)-f\left(y_{2}\right)\right\|}{\left[\delta\left(y_{1}, y_{2}\right)\right]^{\alpha}}
$$

is not increased.
(Note that in case (ii), the inequality reads $\left\|f\left(y_{1}\right)-f\left(y_{2}\right)\right\|$ $\leqq k\left\|y_{1}-y_{2}\right\|^{\alpha}$. The important point is that k need not be changed when the extension is performed.) To the best of the writer's knowledge, no theorems on extension of Hölder-continuous functions with infinite-dimensional range have been known until now, and the present theorem is new even for finite-dimensional Hilbert space.
2. Main theorem. Let X be a vector space over the real numbers. A real-valued function on X is called finitely lower semicontinuous if its restriction to any finite-dimensional subspace of X is lower semicontinuous, the subspace being taken with the "usual" topology. (Examples are: a linear function, a quadratic form; neither need be "bounded".) Now let Y also be a space. A function $\Phi: X \times Y \times Y \rightarrow R$, written $\Phi\left(x, y_{1}, y_{2}\right)$, shall be called a Kirszbraun function (K-function) provided: $\left(1^{0}\right)$ for each fixed y_{1}, y_{2} it is a finitely lower semicontinuous, convex function of x; and (2^{0}) for any sequence $\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)$ in $X \times Y$, any $y \in Y$, and any probability vector $\left(\mu_{1}, \cdots, \mu_{m}\right)$, we have

$$
\begin{equation*}
\sum_{i, j}^{m} \mu_{i} \mu_{j} \Phi\left(x_{i}-x_{j}, y_{i}, y_{j}\right) \geqq 2 \sum_{i}^{m} \mu_{i} \Phi\left(x_{i}-x, y_{i}, y\right) \tag{2.1}
\end{equation*}
$$

where x stands for $\sum_{j}^{m} \mu_{j} x_{j}$.
If X is a finite-dimensional space, we shall call Φ a finite-dimensional K-function if it satisfies the above definition with m replaced by $1+\operatorname{dim} X$.

Theorem 2 (Main theorem). (A) Let X and Y be as above, and Φ be a K-function. Let $\left(x_{1}, y_{1}\right), \cdots,\left(x_{m}, y_{m}\right)$ be a sequence in $X \times Y$ such that $\Phi\left(x_{i}-x_{j}, y_{i}, y_{j}\right) \leqq 0$ for all i, j, and let y be any element of Y. Then there exists a vector x such that $\Phi\left(x_{i}-x, y_{i}, y\right) \leqq 0$ for all i. Furthermore, x can be chosen in the convex hull of $\left\{x_{1}, \cdots, x_{m}\right\}$.
(B) The same statement holds if X is finite-dimensional, and Φ is a corresponding finite-dimensional K-function.

Proof. (A) Let P_{m} be the set of probability-vectors in R^{m}. Consider $\Phi: P_{m} \times P_{m} \rightarrow R$, defined as $\Phi(\mu, \lambda)=\sum_{i} \mu_{i} \boldsymbol{\phi}\left(x_{i}-x, y_{i}, y\right)$ where x stands for $\sum_{j} \lambda_{j} x_{j}$. Now, P_{m} is compact; also, Φ is convex and lower semicontinuous in λ and concave and upper semicontinuous in μ. Thus, by von Neumann's Minimax Theorem [2] there exists a pair (μ^{0}, λ^{0}) in $P_{m} \times P_{m}$ such that for all (μ, λ) in $P_{m} \times P_{m}$

$$
\begin{equation*}
\Phi\left(\mu^{0}, \lambda\right) \geqq \Phi\left(\mu, \lambda^{0}\right) \tag{2.2}
\end{equation*}
$$

By putting $\lambda=\mu^{0}$, we see that the left-hand side of (2.2) is nonpositive; by putting μ a Kronecker delta on the right, we have the conclusion.
(B) First apply Helly's Theorem (see [2]) to reduce the case of general m to the case $m=n+1$; then apply the proof of (A) with $m=n+1$.
3. Examples of K-functions. It is easily verified that the following are K-functions: a negative (constant) real number, a linear form in x, a positive semidefinite quadratic form in x.

For any space Y and $\delta: Y \times Y \rightarrow R$ such that $\delta\left(y_{1}, y_{2}\right) \geqq 0$ and $\delta\left(y_{1}, y_{3}\right) \leqq \delta\left(y_{1}, y_{2}\right)+\delta\left(y_{3}, y_{2}\right)$, then $(-\delta)$ is a K-function. In particular, δ might be a metric on Y.

In case Y is a space with an operation "minus" satisfying ($y_{1}-y_{3}$) $-\left(y_{2}-y_{3}\right)=y_{1}-y_{2}$ (for example, a group, with $y_{1}-y_{2}=y_{1} y^{-1}$), and $\psi: X \times Y \rightarrow R$ satisfies

$$
\begin{equation*}
\sum_{i, j} \mu_{i} \mu_{j} \psi\left(x_{i}-x_{j}, y_{i}-y_{j}\right) \geqq 2 \sum_{i} \mu_{i} \psi\left(x_{i}-x, y_{i}\right) \tag{3.1}
\end{equation*}
$$

then $\Phi\left(x, y_{1}, y_{2}\right)=\psi\left(x, y_{1}-y_{2}\right)$ satisfies the inequality of the definition of " K-function." If Y is a linear space, then ψ might be a negative semidefinite quadratic form in y, or a bilinear form in x and y; these give rise to K-functions.

If x is the real numbers, then x^{4} is a K-function; this follows from the identity

$$
\begin{aligned}
\sum \mu_{i} \mu_{j}\left|x_{i}-x_{j}\right|^{4}= & 2 \sum_{i} \mu_{i}\left|x_{i}-x\right|^{4} \\
& +6\left(\sum_{i} \mu_{i} x_{i}^{2}-x^{2}\right)^{2}
\end{aligned}
$$

(where x is $\sum_{i} \mu_{i} x_{i}$, as before, and $\sum_{i} \mu_{i}=1$).
Moreover, any linear combination of K-functions with nonnegative coefficients is a K-function. (Of course, assuming X, Y the same for all of them.)

Corollaries to Theorem 1. Kirszbraun's Theorem follows from the case $\psi(x, y)=\|x\|^{2}-\|y\|^{2}$. The Debrunner-Flor Lemma mentioned in the Introduction is the case where $\psi(x, y)$ is a bilinear form. The theorem of Grünbaum [9] iscontained in the case $\psi=k_{1}\left(\|x\|^{2}-\|y\|^{2}\right)$ $+k_{2}\langle x, y\rangle$, with nonnegative k_{1}, k_{2}.

Letting X be a Hilbert space and Y a metric space, and taking $\Phi\left(x, y_{1}, y_{2}\right)=\|x\|^{2}-\delta\left(y_{1}, y_{2}\right)$, we obtain the necessary lemma to prove part (ii) of Theorem 1, with $\alpha=\frac{1}{2}$. The proof parallels closely the usual proof of the extension theorem for Lipschitz functions (see [11] or [13]), slightly modified to keep the range of the extension in the closed convex hull of the range of f.

As remarked in the Introduction, $\left[\delta\left(y_{1}, y_{2}\right)\right]^{\beta}$ is also a metric if $\beta \leqq 1$; hence we have an extension theorem for f satisfying $\left\|f\left(y_{1}\right)-f\left(\lambda_{2}\right)\right\| \leqq\left[\delta\left(y_{1}, y_{2}\right)\right]^{\alpha}$ with $\alpha \leqq \frac{1}{2}$. Indeed, if $g(\gamma)$ is a real-valued function of $\gamma \geqq 0$ with $g(0)=0, g(\gamma)>0$ for $\gamma>0, g$ nondecreasing in γ, and $\gamma^{-1} g(\gamma)$ nonincreasing for $\gamma>0$, we have (for $\gamma_{1}, \gamma_{2}>0$):

$$
\begin{aligned}
& \gamma_{1} g\left(\gamma_{1}+\gamma_{2}\right) \leqq\left(\gamma_{1}+\gamma_{2}\right) g\left(\gamma_{1}\right) \\
& \gamma_{2} g\left(\gamma_{1}+\gamma_{2}\right) \leqq\left(\gamma_{1}+\gamma_{2}\right) g\left(\gamma_{2}\right)
\end{aligned}
$$

whence (by adding) g is subadditive, so that $g \circ \delta$ is again a metric. Thus $g(\gamma)=\gamma^{\beta}$, with $\alpha \leqq 1$, is a special case.

It has recently been established by H. Brézis and C. M. Fox that $\psi(x, y)=-\|y\|^{\beta}$ is a K-function for $0<\beta \leqq 2$ in a Euclidean space (or an inner product space). Brézis uses M. Riesz' Convexity Theorem; Fox gives an elementary (but ingenious) proof of the stronger statement

$$
\begin{equation*}
\sum_{\imath, j}^{m} \mu_{i} \mu_{j}\left\|y_{i}-y_{j}\right\|^{2 \alpha} \leqq \sum_{i, j}^{m} \mu_{i} \mu_{j}\left(\left\|y_{i}\right\|^{2}+\left\|y_{j}\right\|^{2}\right)^{\alpha} \quad(\text { for } 0<\alpha \leqq 1) \tag{3.2}
\end{equation*}
$$

J. Moser and the writer have simplified Fox's proof, as follows:

Lemma. For x_{1}, \cdots, x_{m} in an inner product space, and a_{1}, \cdots, $a_{m}>0, \beta>0$, note

$$
\begin{equation*}
\sum_{i, j} \frac{\left\langle x_{i}, x_{j}\right\rangle}{\left(a_{i}+a_{j}\right)^{\beta}}=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty}\left\|\sum_{i} e^{-a_{i} t} x_{i}\right\|^{2} t^{\beta-1} d t \tag{3.3}
\end{equation*}
$$

and thus it is nonnegative.
Now write the left-hand side of (3.2) as

$$
\sum_{i, j}^{m} \mu_{i} \mu_{j}\left(\left\|y_{i}\right\|^{2}+\left\|y_{j}\right\|^{2}\right)^{\alpha}\left[1-\frac{2\left\langle y_{i}, y_{j}\right\rangle}{\left\|y_{i}\right\|^{2}+\left\|y_{j}\right\|^{2}}\right]^{\alpha}
$$

apply Bernoulli's inequality to the expression in square brackets, and then the lemma, with $x_{i}=\mu_{i} y_{i}$, and $a_{i}=\left\|y_{i}\right\|^{2}$. (The case where some y_{i} are zero is easily disposed of by a continuity argument.)

The above argument is easily generalized to show $-\left[Q\left(y_{1}-y_{2}\right)\right]^{\alpha}$, with $0<\alpha \leqq 1$, is a K-function if Q is a positive semidefinite quadratic form in a linear space Y. Part (ii) of Theorem 1 is proved by use of the K-function $\|x\|^{2}-k^{2}\left\|y_{1}-y_{2}\right\|^{2 \alpha}$, followed by the "usual" argument for Lipschitz functions.
J. Moser and G. Schober have shown that if X is one-dimensional, then $-\left[\delta\left(y_{1}, y_{2}\right)\right]^{2}$ is a finite-dimensional K-function; i.e., it satisfies the desired inequality with $m=2$. Schober's proof considers separately the case $\delta\left(y_{1}, y_{2}\right)^{2} \leqq \delta\left(y_{1}, y\right)^{2}+\delta\left(y_{2}, y\right)^{2}$ which is easy, and the opposite case, which is treated by the standard maximization argument of differential calculus applied to the function $f(\mu)=$ $\mu(1-\mu) \delta\left(y_{1}, y_{2}\right)^{2}-\mu \delta\left(y_{1}, y\right)^{2}-(1-\mu) \delta\left(y_{2}, y\right)^{2}$. The extension theorem of Banach follows by Theorem 2, part (B), applied to $|x|^{2}-\left[\delta\left(y_{1}, y_{2}\right)\right]^{2}$.

Note added in proof. Banach's theorem mentioned above is more probably due to McShane (Bull. Amer. Math. Soc. 40 (1934), 837842). (2°) The hypothesis "finitely lower-semicontinuous" follows from the other hypotheses of the definition of " K-function", and so can be dropped. (3°) Hayden, Wells, and Williams of the University of Kentucky have generalized the extension-theorem to cover functions from one L^{p}-space to another (unpublished work).

References

1. S. Banach, Introduction to the theory of real functions, Monografie Mat., Tom 17, PWN, Warsaw, 1951. MR 13, 216.
2. C. Berge and A. Ghouila-Houri, Programmes jeux et réseaux de transport, Dunod, Paris, 1962; English transl., Methuen, London and Wiley, New York, 1965. MR 33 \#1137; MR 33 \#7114.
3. F. E. Browder, Existence and perturbation theorems for nonlinear maximal monotone operators in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 322-327. MR 35 \#3495.
4. J. Czipszer and L. Gehér, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220. MR 17, 136.
5. L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 101-180. MR 28 \#524.
6. H. Debrunner and P. Flor, Ein Erweiterungssatz für monotone Mengen, Arch. Math. 15 (1964), 445-447. MR 30 \#428.
7. D. G. de Figueiredo and L. A. Karlovitz, On the extension of contractions on normed spaces, University of Maryland Technical Note, BN-563.
8. B. Grünbaum, On a theorem of Kirszbraun, Bull. Res. Council Israel Sect. F 7 (1957/58), 129-132. MR 21 \#5155.
9. -, A Generalization of theorems of Kirszbraun and Minty, Proc. Amer. Math. Soc. 13 (1962), 812-814. MR 27 \#6110.
10. M. D. Kirszbraun, Über die zusammenziehenden and Lipschitzschen Transformationen, Fund. Math. 22 (1934), 7-10.
11. E. J. Mickle, On the extension of a transformation, Bull. Amer. Math. Soc. 55 (1949), 160-164. MR 10, 691.
12. G. J. Minty, On the simultaneous solution of a certain system of livear inequalities, Proc. Amer. Math. Soc. 13 (1962), 11-12. MR 26 \#573.
13. -, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29 \#6319.
14. -, On the generalization of a direct method of the calculus of variations, Bull. Amer. Math. Soc. 73 (1967), 315-321. MR 35 \#3501.
15. I. J. Schoenberg, On a theorem of Kirszbraun and Valentine, Amer. Math. Monthly 60 (1953), 620-622. MR 15, 341.
16. S. O. Schönbeck, Extension of nonlinear contractions, Bull. Amer. Math. Soc. 72 (1966), 99-101. MR 37 \#1960.
17. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83-93. MR 6, 203.

Indiana University, Bloomington, Indiana 47401

[^0]: A MS Subject Classifications. Primary 2670; Secondary 5234.
 Key Words and Phrases. Kirszbraun's Theorem, Hölder-continuous functions, extension theorems, $\mathrm{Lip}(\alpha)$.
 ${ }^{1}$ This research supported by National Science Foundation Grant GP-11878.

