# BAER SUBPLANES AND BLOCKING SETS 

BY A. BRUEN<br>Communicated by H. S. M. Coxeter, September 19, 1969

A blocking set $S$ in a projective plane $\pi$ is a subset of the points of $\pi$ such that every line of $\pi$ contains at least one point of $S$ and at least one point which is not in $S$. Denoting the number of points in $S$ by $|S|$ our main result, obtained by purely combinatorial means, is the following: If $\pi$ is finite of square order, say $m^{2}$ then $|S| \geqq m^{2}+m$ +1 and if $|S|=m^{2}+m+1$ then the points of $S$ are the points of a subplane of $\pi$ of order $m$ (a Baer subplane). In this connection we first of all prove the following

Theorem. Baer subplanes form blocking sets.
Proof. Suppose $\pi$ is a plane of order $m^{2}$ which contains a subplane $S$ of order $m$. Since any line of $\pi$ contains at most $m+1$ points of $S$ we have that every line of $\pi$ contains at least one point which is not in $S$. Let $l$ be any line of $\pi$ and $P$ be any point of $l$ which is not in $S$. Then there is at most one line of $S$ through $P, S$ being a subplane. Also since any two points of $\pi$ are connected by a unique line, the $m^{2}+m+1$ points of $S$ are contained in the $m^{2}+1$ lines of $\pi$ through $P$. If $l$ contained no point of $S$, the lines of $\pi$ through $P$ would account for at most $(m+1)+\left(m^{2}-1\right) \cdot 1=m^{2}+m$ points of $S$. Thus $l$ must contain at least one point of $S$ establishing our theorem.

We now proceed to the main result. $\pi$ denotes a plane of order $n$ and $S$ is a blocking set in $\pi$. $S-l$ denotes all those points $P$ such that $P$ is contained in $S$ but not in $l$, and $|S-l|$ means the number of such points $P$; similarly for $l-S,|l-S|$.

Lemma 1. No line of $\pi$ contains more than $|S|-n$ points of $S$.
Proof. Let $l$ be any line of $\pi$ and suppose $l$ contains exactly $t$ points of $S$. Since $S$ is a blocking set there is at least one point $R$ in $l-S$. There are $n$ lines of $\pi$ through $R$ besides $l$, each containing at least one point of $S$. Thus always $|S| \geqq t+n$.

Lemma 2. Let a objects be packed into b boxes such that each box contains at least one object, with $b \leqq a<2 b$. Define a function $f$ on the objects $X$ as follows:

AMS Subject Classifications. Primary 5070, 5060; Secondary 0527.
Key Words and Phrases. Finite projective plane, Baer subplane, incidences, blocking sets.
$f(X)=1$ if the box containing $X$ contains other objects,
$f(X)=0$ otherwise.

Then for any such packing $P$, we have

$$
A(P)=\sum f(X) \leqq 2(a-b)
$$

the summation being over all objects $X$.
Proof. It can be seen that if some box contains more than two objects, for some packing $P$, there is a packing $P^{\prime}$ such that $A\left(P^{\prime}\right)$ $>A(P)$. Hence $A(P)$ attains its maximum value when each box contains no more than two objects, and, in this case, $A(P)=2(a-b)$.

From now on we assume that $n$ is a square, $n=m^{2}$, say.
Lemma 3. Suppose $|S|=m^{2}+m+1$. Let some line $l$ of $\pi$ contain exactly $k$ points of $S$. Let $B$ denote those lines of $\pi$ passing through points of $l-S$ and containing at least two points of $S-l$. Let I denote the set of incidences of points of $S-l$ with lines of $B$. Then $|I| \leqq 2(m+1-k)$ $m^{2}+1-k$.

Proof. For each point $P$ in $l-S$ the $m^{2}+m+1-k$ points of $S-l$ are packed into $m^{2}$ lines through $P$. Hence, by Lemma 2 these lines through $P$ yield at most $2\left[\left(m^{2}+m+1-k\right)-m^{2}\right]$ incidences in $I$. Thus, since $|l-S|=m^{2}+1-k$, we have

$$
|I| \leqq 2\left(m^{2}+1-k\right)(m+1-k)
$$

Lemma 4. If $|S|=m^{2}+m+1$, some line of $\pi$ contains precisely $m+1$ points of $S$.

Proof. Let some line $l$ of $\pi$ contain precisely $k$ points of $S$ where $k$ is the maximum number of points of $S$ on any line of $\pi$. Clearly $k \geqq 2$ and, by Lemma $1, k \leqq m+1$. Let $B, I$ be as in Lemma 3 , and $P$ any point of $S-l$. There remain $m^{2}+m-k$ points of $S-l$ and the $k$ lines of $\pi$ which connect $P$ to points of $S \cap l$ account for at most $k(k-2)$ of them. Thus there are at least $m^{2}+m-k-k(k-2)$ points of $S-l$ different from $P$ and also incident with lines of $B$ through $P$. If there are $b$ lines of $B$ through $P$ we must have $b(k-1) \geqq\left[m^{2}+m-k\right.$ $-k(k-2)]$. Thus the lines of $B$ through $P$ yield at least $b$ incidences in $I$, where $b \geqq(m+1-k)(m+k)(k-1)^{-1}$. Summing over all the points of $S-l$ such as $P$ we obtain $|I| \geqq\left(m^{2}+m+1-k\right) b$. Thus, from Lemma 3, we must have

$$
2\left(m^{2}+1-k\right)(m+1-k) \geqq\left(m^{2}+m+1-k\right) b .
$$

If we assume $k<m+1$ we have $2(k-1)\left(m^{2}+1-k\right) \geqq\left(m^{2}+m+1-k\right)$
$(m+k)$. Now, $k \leqq m \Rightarrow 2(k-1)<2 k \leqq(m+k)$ and $m^{2}+1-k<m^{2}+m$ $+1-k$, that is, the supposition $k<m+1$ is contradictory. Thus, from Lemma $1, k=m+1$, and some line of $\pi$ contains precisely $m+1$ points of $S$.

Theorem 1. If $|S|=m^{2}+m+1$, then the points of $S$ are the points of a Baer subplane of $\pi$.

Proof. By Lemma 4 some line $l$ of $\pi$ contains precisely $m+1$ points of $S$. Since $S$ is a blocking set, we have that if $U$ and $V$ are any two distinct points of $S-l$ the line $U V$ of $\pi$ must meet $l$ in a point of $S \cap l$. Thus for any point $P$ of $S-l$ the ( $m+1$ ) lines of $\pi$ connecting $P$ to the $m+1$ points of $S \cap l$ account for all the $m^{2}$ points of $S-l$, and, using Lemma 1 , each such line contains precisely $m+1$ points of $S$. Hence if we define a structure $\pi^{\prime}$ such that the points of $\pi^{\prime}$ are the points of $S$, the lines of $\pi^{\prime}$ are those lines of $\pi$ containing at least two points of $S$, and incidence in $\pi^{\prime}$ is given by incidence in $\pi$, it can be seen that $\pi^{\prime}$ is a subplane of $\pi$, and $\pi^{\prime}$ has order $m$.

Theorem 2. $|S| \geqq m^{2}+m+1$.
Suppose $|S|=m^{2}+m+1-t, t>0$. By Lemma 1 no line of $\pi$ contains more than $m+1-t$ points of $S$. Let $L$ be any set of $t$ points of $\pi$ none of which is in $S$ and such that the points of $S^{\prime}$ do not form the points of a Baer subplane of $\pi$ where $S^{\prime}=S \cup L$. Then $S^{\prime}$ is a blocking set since no line of $\pi$ contains more than $(m+1-t)+t$ points of $S^{\prime}$. Thus we would have a blocking set $S^{\prime}$ with $\left(S^{\prime}\right)=m^{2}+m+1$; by the condition on $L$ this contradicts Theorem 1.

Remark. The author has since proved that $|S| \geqq n+n^{1 / 2}+1$ for $\pi$ of order $n, n$ arbitrary. This result and some corollaries will be discussed elsewhere.

Acknowledgement. I wish to thank sincerely C. Fisher and my supervisor Professor F. A. Sherk of Toronto for their valuable help and encouragement in connection with this work.

