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ABSTRACT. This paper begins with a review of those aspects of 
the theory of higher derivations on fields which form a background 
for the study of recent uses of higher derivations in automorphism 
theory of complete local rings. Basic definitions and basic prop­
erties of convergent higher derivations on complete local rings are 
discussed including the concept of convergent rate group of auto­
morphisms, the theory of which is at the present time almost totally 
undeveloped. 

Methods of constructing automorphisms using higher deriva­
tions are considered next, particularly in connection with the prob­
lem of identifying the factor groups of the higher ramification series 
of a complete local ring. Recent results on this problem are dis­
cussed as well as some possible directions for future research on the 
topics of this article. 
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I. Introduction. My purpose in this article is to provide a selective 
outline of the development of the theory of higher derivations leading 
to applications in the automorphism theory of complete local rings. 
As a result certain recent developments in higher derivation theory, 
except perhaps for casual reference, are outside the scope of this 
paper, e.g., applications to Galois theory of fields [5], [6], [21 ], [35], 
[38] as well as the theory of universal higher derivations and in-
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separability criteria [2], [33]. Proofs, or indications of proof, will be 
provided now and then to clarify the subject for the general reader. 

Let A be an (non-associative) algebra over a field k of charac­
teristic zero and let d be a derivation on A, that is, d is an additive 
map of A into A which satisfies the product rule, d(ab) =ad(b) +d(a)b. 
We will use Der A to denote the additive group of all derivations on 
A. The sequence of maps {d*'/i!} (all sequences and sums, unless 
otherwise indicated, are indexed from 0 to oo) is an example of a 
higher derivation on A. If A is complete in some topology in which 
the above sequence of maps converges then exp d=^2(di/il) will be 
an automorphism on A. For example, if k is the field of real numbers 
and A has finite dimension over k then k is complete in the Euclidean 
topology and exp d is a convergent series and hence an automorphism, 
for all d in Der A. Or, in the general case, if d is associative nilpotent 
then exp d contains only a finite number of non-zero terms and is thus 
an automorphism. Such automorphisms have an important role in the 
structure theory of Lie algebras over fields of characteristic zero 
[27, Chapter 9] . 

II. Basic definitions and basic properties. 
(1) DEFINITION. Let hDk be (non-associative) rings. A set D 

= {Z)(i)} of additive maps of k into h which satisfies (i) and (ii) is 
called a higher derivation of k into h. 

(i) Z><»>(a&)=£ {D«>(a)D<*-*>(b)\i = 0, • • • , n } , n ^ O . 
(ii) £><°> = Id, (identity map on k). 
Property (i) is called the Leibniz rule. The more familiar Leibniz 

rule for derivations, namely, 

d»(ab) = Z(WVw»-«(J), 

allows one to establish (i) in the case of the above example simply by 
dividing both sides by n\ 

The above definition was first given by F. K. Schmidt in 1937 
[10, p. 224] generalizing a concept first introduced, a year earlier, 
by H. Hasse in connection with the differential calculus of algebraic 
curves over fields of prime characteristic, [9], [37]. We shall need 
a pair of results found originally in the Hasse and Schmidt paper 
[10, pp. 229, 230]. Let 3C(fe, h) be the set of all higher derivations on 
the ring k into the overring h. If k = h we abbreviate the notion to 
3C(ife). 

(2) PROPOSITION. Let D be in 3C(&, h) where k is a subfield of the 
field h, and let x be an element of h. If x is transcendental over k, then, 
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given {ui\i^l,UiÇzh} 1 there exists exactly one extension D* in3£(k (x), h) 
of D for which D*}(x) = wt-, i*z 1. If x is separable algebraic over k then 
D extends uniquely to D* in 3C(k(x), h). 

One can prove the first assertion simply by constructing £>* on 
k[x] as dictated by the conditions Z>(*(x) = wt-, the Leibniz rule and 
additivity. Uniqueness follows from the construction. As in the case 
of derivations, a higher derivation defined on an integral domain 
has a unique extension to the field of quotients. 

We sketch a nonstandard sort of proof of a slight generalization 
of the second statement of the proposition, assuming the charac­
teristic of k different from zero. The reason for doing this is that the 
method of proof generalizes to progressively more complicated situa­
tions leading to a convenient method for constructing higher deriva­
tions on a complete regular local ring having residue field charac­
teristic different from zero (Theorem 16) [18, p. 28, Theorem 4] . 

We assume now that characteristic k = p?*Q. A basic property of 
D in 3C(&, h) is the following. 

JD«)(oP) = 0 if p\i} 

DM(a?) = [Z><«">(a)]» Mp\i. 

The above is proved by p — 1 applications of the Leibniz rule to 
D™(ap). I t follows then that if n is a positive integer 

(3) D^(apn) = 0, if pn\u 

Assume now that ki is a subfield of h containing k such that ki/k 
is separable algebraic. Since ki/k is separable in the linear disjoint 
sense and ki~k(kp) it follows that, given a basis U for k\ as a vector 
space over fe, then Up = {up\ # £ U) is also a basis for kx over k. 
Hence, for any positive integer n> Up" is a basis for ki over fe. For 
a given integer j we choose n so that pn>j. Then, for a in k%t 

a = ^2aiUipU
t aiÇzk, UiÇzU, the sum being over a finite subset of U. 

If AcG3C(fei, h) extends D then 

(4) DÏ\a) = S DU\a4)uf 

by virtue of (3). The desired result is now obtained from an analysis 
of (4) which clearly implies that if there is a £>* extending D there is 
but one such. Moreover, (4) provides a way of constructing D*. I t is 
a routine matter to verify that the maps D** constructed using (4) 
are independent of the choice of n and that {D**} is a higher deriva­
tion extending D (for this it is convenient to assume that 1 is in U). 

Let k [ [X ] ] be the power series ring in a single indeterminate X over 
the field k. We consider the group é of automorphisms on fe[[-ï]] 
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defined by 1={a\a-Id(k[[X]])CXk[[X]]t a(X)=*X). The fol­
lowing bijection between é and 3Q,(k) was essentially noted by 
Schmidt [lO]. Given D in 3C(&) let aD ( £ 0 ) be defined by aD(a) 
5=5 X) jD(<)(a)X* for a in k and OJDCX") = X. I t is a routine matter to 
verify that the restriction of aD to k is an isomorphism which takes 
a into a power series with constant term a and, hence, that the given 
conditions determine an element of $. Conversely, if a is in £ and i 
is a nonnegative integer we define D{i)(a) to be a* where 
«(a) = X) 0iX*. Again, it is a simple matter to show that Da= {D™ } 
is in 5C(fe) and that a = az>«. The bijection a—>Z> induces group struc­
ture on 3C(&) in the natural way, the group operation " o " being 
given by D o E = F where 

FM = £ {z)«>£<*-<> | f = 0, • • • , n}. 

A portent of things to come; we have a group of higher derivations 
isomorphic to a group of inertial automorphisms of a complete local 
ring. 

Recently, R. L. Davis obtained a generalization of the Jacobson 
Galois theory for purely inseparable exponent one field extensions 
to purely inseparable extensions of arbitrary finite exponent w + 1 
[5]» [6], [25]. In this theory Davis uses the finite higher derivation 
{£)(*)| i = 0, • • • ,pn] as a generalization of derivation and the opera­
tion a o " to generalize addition of derivations. The closure with re­
spect to pth powers condition of the Jacobson theory appears in the 
Davis theory in the factors of the upper central series of the group 
of higher derivations, these being additive groups of derivations. 

I I I . Construction of higher derivations. The concept, higher 
derivation, was originally introduced in order to remove some of the 
anomalies in the calculus of derivations on fields of characteristic 
pT^O [9], [28]. Nevertheless, higher derivations have important 
applications in characteristic zero situations, as we shall see. The 
following result provides considerable information about higher 
derivations in the latter case. 

(5) THEOREM [ l l , pp. 190-191]. Let A be an algebra over afield k 
having characteristic zero. Given a sequence 

{ ^ I ^ G D e r * , » « 1, • • • , » } , 

the sequence D= {l>(i)} is in 3C(A) where 

—._ Cdu ' • • dir\ ) 
(6) DM = £ | - i — : k + • • • + ir = n\ , » è l . 
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Moreover, the correspondence {di} —>D is a bisection between the set of 
all sequences {di} and 3C(-4). 

This theorem is contained in the above reference for the case in 
which A is a field, however, the proof given there does in fact serve 
for the result as stated above. 

We see by Theorem 5 that the abundance of higher derivations on 
A is determined by the abundance of derivations. In 1927, R. Baer 
showed that the subfields of a field h of characteristic zero which are 
fields of constants of derivations on h are precisely those subfields k 
algebraically closed in h [ l] . The field of constants of D in 3C(&) is 
hD— {aCzh\D(i)(a)~0, i>0\. Since the intersection of subfields of 
h, each of which is algebraically closed in h, is again algebraically 
closed in h it follows from the above theorem that the fields of con­
stants of higher derivations on h are again the subfields of h alge­
braically closed in h. 

The similarity between (6) and our first example of a higher der­
ivation suggests that the map exp may have a more substantial 
connection with higher derivations than the relationship observed 
in that example. This is the case and that connection as well as the 
resulting relationship between the Campbell Hausdorff formula and 
products of higher derivations has been investigated by the writer 
[22]. 

An analog of Theorem 5 in the case in which A is a field having 
characteristic £,7**0, is given below (Theorem 9). This result is 
vital to a technique for constructing inertial automorphisms on 
complete local rings as we shall see presently. But first, an elemen­
tary observation which lends some insight into the characteristic p 
case: 

(7) PROPOSITION. Let h be afield having characteristic £,5^0, and let 
k be a subfield of h. If k is perfect then the only higher derivation of k 
into h is the trivial one Q= {Q(i)}, (?(i> being the zero map for i>0. 

PROOF. Let P - {£><*>} be in 3C(Jfe, h). Since D™(a») =pa»-lD™(a) 
= 0, and & = fep, it follows that D™ is the zero map 0. If D™ = 0, for 
i<n, then, by the Leibniz rule, Z)(n) is a derivation. Thus, by the 
proof that Z)(1> =0 we have £><n> = 0. 

The following definition, due to O. Teichmuller, is basic for our 
purposes. We state it for completeness and refer the reader to the 
algebra texts for further information [26]. 

(8) DEFINITION. Let h be a field having characteristic p, ?*0. A 
subset S of A is ^-independent if the set of all monomials 
{$il ' • 'Sntt|siG:S» ij<p} is linearly independent over hp. If, in 
addition, hp(&) = h then S is a £-basis for h. 
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To illustrate. If hp = h, of course, h has no ^-independent subsets. 
If hp%h choose SiG^, SiÇ£hp. Then {51} is a ^-independent subset. If 
hp(si)Q:h choose s2 in h, not in hp(si). Then {$i, s2} is a ^-independent 
subset, etc. 

(9) THEOREM [12, p. 131, THEOREM l ] . Let $ be a p-basis for the 
subfield k of a field h and let {<f>i} be a sequence of maps of S into h. 
There is exactly one D in 3C(fe, h) such that Z) ( i ) |$=# t- (£>(i)|s denotes 
the restriction of D™ to S). 

A proof of Theorem 9, not the original, based on Proposition 2 
and the proof of the second part of Proposition 2 can be easily sum­
marized as follows. We note first that S is an algebraically inde­
pendent set over the maximal perfect subfield &«> of k. We apply the 
extension, to any number of indeterminates, of the first part of 
Proposition 2. Thus, there is exactly one D* in ^(fe^S), h) such that 
o (*|s==0i. Now k is separable over &«»(£) in the linearly disjoint 
sense, since S is a £-basis for both fields. In fact it is easily shown 
[13, p. 347] that if U is a basis for k as a linear space over &<»(§) then 
Up is also. Using the argument following Proposition 2 we conclude 
that each E in 3C(&oo(S), h) has a unique extension to 3C(&, h) and the 
proof is complete. We are now in a position to proceed to automor­
phisms. 

IV. Derivation automorphisms, convergence rate automorphisms 
and the ramification series. Let R be a complete local ring with 
maximal ideal M and residue field k = R/M. Let G be the group of 
automorphisms of R. The M related structure of R suggests a de­
composition of G as follows. Let i>l. 

Gi= {a G G | a(a) - a G ^ f o r a in R), 

Hi = {a EGi\a(a) - a G Mi+1 for a in M}. 

The series (10) is called the higher ramification series of G or simply 
the ramification series. This 

(10) G O F O G 2 D ^ D - " 

series was first considered by Saunders MacLane who, in 1939, 
determined the invariant subrings of the groups of (10) as well as 
the factor groups of successive pairs of subgroups all in the case in 
which R is the ring of integers of a £-adic field [30 ]. 

The Af-adic topology on G is the topology obtained by choosing, 
for each a in G, the cosets {Gta, MiOt\ i> 1} as an open neighborhood 
basis a t a. One sees that G is complete in the Af-adic topology. 
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A higher derivation D = {D(i)} on R is said to converge if Z) D^ 
is a convergent series of maps. This simply means that there is a 
sequence {tit} of nonnegative integers for which lim m= oo and 
D^(R)CM\i>0. 

We consider the following subset of 3C(-R). 3Cc(i?) = {DEW(R)\ 
Z^-D(i) converges and D^i)(M)C.M2

i i>0}. The succeeding list of 
statements is discussed below. 

(i) If D is in Xe(R) then £><*>(R)CM, i> 1. 
(ii) 3Q,e(R) is a subgroup of 3C(2£). 
(iii) X # ( i ) is in Hx for D = {D™} in XC(JR). 
(iv) $ : 3Q,c(R)-*Hi where 0(D) = 23 -^(i) *s a group homomorphism. 

The range of </> is called the group of derivation automorphisms and is 
denoted by GD* 

(v) GD is an invariant subgroup of G. 
(vi) Given a sequence {w*} of positive integers such that lim m 

= oo, the set W{ni}={Dew(R)\DW(R)CMn\ D^(M)CMn<+1} 
forms a subgroup of 3CC(JR). 

(vii) 0(5C{nt}):=G{n<} is an invariant subgroup of G, called a c.r. 
(convergence rate) subgroup. 

Proofs of (i) and (ii) are found in [18, Lemma 1, Theorem 3] . 
Considering (iii) and (iv), additivity of the J9(t) and the Leibniz rule 
establish that Z ^ ( i ) is a n endomorphism. A routine check shows 
that D—»Z) -D(0 is a product preserving map of 3CC(R) into the 
endomorphism ring of R. But 0 ( 0 = Id. Hence <I>(D) is an auto­
morphism and is in Hi by (i) and the fact that D^i)(M)CM'1 for 
i>0. With reference to (v), if a is in G and D is in 3CC(.R), then 
a"1Da= {orW^a} is in 3C(R) and is, in fact, in 3CC(R) since a(Af*) 
= Af< for ; > 0 . Also, o r K Z ) # ( 0 ) a = Z a " 1 ! ) ^» . This proves (v) and 
(vii). The proof of (vi) requires only a (perhaps long) look at the 
definition of product in 3C(JR) and the expression 

£(n) = £ {(-iyD<il) . . . 2?«r) | fi + • • • + f, = f|, V > 0} 

for the ttth map of 25 the inverse of D. 
We have now two sets of invariant subgroups of G, the ramifica­

tion series and the c.r. subgroups. Nothing would seem to lead one 
to suspect tha t the set of c.r. subgroups is linearly ordered by inclu­
sion. Thus one would expect that the two sets do not coincide. 
We shall see that this is true in general; however, we shall also see 
that there are relationships between the two sets. The remainder of 
this article is concerned primarily with these questions and with the 
use of derivation automorphisms to evaluate the successive factors 
of the ramification series (10). 
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V. Approximating inertial automorphisms with derivation auto­
morphisms. To these ends we consider next the problem of approxi­
mating inertial automorphisms with derivation automorphisms in 
the ikf-adic topology. We will follow, roughly, the historical develop­
ment. 

The first two techniques are illustrated in the case in which R is a 
p-ring, that is R is a complete discrete valuation ring having char­
acteristic 0, whereas the residue field of R has characteristic p, 7*0. 
In this case M is a principal ideal. Let w be a generator of M. If a 
is in Gi then a = ld+Tria* and a is in Hi if and only if a*(7rR)C.irR. 
Thus, if a is in Hiy a* induces a map on k. Since a preserves sums and 
products we have 

a*(a + b) = c**(a) +«*(&), 

a*(ab) = aa*(b) + a*(a)b + ir*a*(a)a*(i). 

Thus, if a(EHi, a* induces a derivation 8a on k, S« being the unique 
map which makes (11) commutative where £ denotes the natural 
map of R onto k. 

R->:R 

(11) * i t i * 
k -> k 

The homomorphism </>i:Gi—>(k, + ) and ^»:i7 t~»Der & where 
4>i(a) =£a*(7r) and \pi(a) = ôa are basic to the process of approximat­
ing inertial automorphisms in the Af-adic topology. The exactness of 
the following sequences is clear, e being the natural injection. 

0-• fl, A G,^i (*,+), 
€ $i 

0->Gi+i->Hi-->T)er k, 

We consider now the problem of constructing a pre-image in Hi 
of 5 G Der k with the aid of ^ . 

Method 1. We choose d in Der R which induces S as in diagram 
(11). We next select i^(e+l)/(p-l)f where pR = ireR, that is, e 
is the ramification index of R. We also assume at this point that 
p5*2. Let D={irindn/n\}. A check shows that D is in 5C(i?). In 
fact, we chose i large enough to insure that D converges. Thus 

Tindn 

aD = £ = Id + *•«(<* + * • • • • ) 

is in Hi and, apparently, ^*(ap) = 5. 
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This technique works fine for many purposes if R is unramified 
(e = 1) since in that case every ô in Der k lifts to d in Der R [13, p. 349, 
Theorem l ] , ( e + l ) / ( £ - l ) = 2 / ( £ ~ l ) ^ 1 (p*2), and Gi = Hi for 
i*zl. Thus, if R is an unramified p-ring (ring of integers of a £-adic 
field) the above discussion implies the conclusion that ipi induces an 
isomorphism of Hi/G%+\ with Der h. Since Gi = Hi, i^l, we have all 
the factors of (10). As stated earlier this was first done by MacLane 
who used quite different methods [30 ]. 

Since, for a in Hif a = ai, mod Hi+i where a\ is in GD and by iterat­
ing the above process, a=ar, mod Hi+ri for ar in GD and any r > 0 , 
it is simply a matter of showing that limr ar is in GD to conclude that 
in this case GX = HI — GD* 

Method 2. Given S in Der k we construct d in 3C(fe) so that da) = 5 
(Theorem 9) and lift d to D in 3C(-R) (i.e., Z?<*> induces d™ for i^l). 
Now TKD = {7TwiD(n)} is in 3Q,C(R) and 

« A = Z TniD^ = 1 + ^ ( Z ^ + * • • • • ) 

is in H» and clearly has the property \pi(aviD) = 5. 
This method is useful if e and £ are relatively prime since in that 

case we have 
(i) JC(fe) lifts to 5C(Ry and 
(ii) Hi = Gi,i^2. 
As in the unramified case one finds that Hi = GD and that ^ maps 

onto Der k. Hence \pi induces an isomorphism Hi/Gi+x—tDer k. This 
fact was demonstrated using other methods by the writer [17, p. 
538, Theorem 5] in a paper in which it is also shown that the map 
a-*%(a{ir)/Tr) induces an isomorphism of Gi/Hi with the group of 
£th roots of unity in k. The factor group G/G% has also been deter­
mined in this case [16, p. 1208, Corollary 3] . 

The only result concerning the factors of the ramification series 
which encompasses all fl-rings is due to J. Neggers [31, p. 503, 
Theorem 6] . 

(12) THEOREM. Given a v-ring R with ramification e and an integer 
i^ (e+P)/(p — l), then, if a is in G», there is a derivation da on R such 
that a*=da, mod M. 

Using the techniques of Method 1 ce in Gi can be approximated, 
mod Gt+i, by j8< = ^ 7r*nd£. Hence, a can be approximated, mod 
Gi+r, by ]8r in GD for any given integer r. One observes that j8 = limr j8r 

is in GD and, hence, 

1 Statement (i) was proved by the writer for R unramified [14, p. 579, Corollary 1 ] , 
The result is easily extended to tamely ramified tz-rings. 
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(13) COROLLARY. GD^Gifori^(e+p)/(p-l). 

The next corollary is also an immediate consequence of Neggers' 
Theorem. Let Derii? = {d£DerjR/d(7r)£7ri?}. The homomorphisms 

Ail d -» Der R/ir Der R, A/ : H4 -> Den R/ir Der R 

and 

A*:Gi-+T)erR/I)er1R 

are defined by mapping a into the coset of da. 

(14) COROLLARY. Given that i^(e+p)/(p — l) the following are 
exact. 

0 -» Gi+1 -» d - A Der R/w Der R -> 0, 

A* 
0 -» #,• -» Gt- - A Der R/Ben R -> 0, 

e A/ 
0 -> G i+i -» #,- —• Deri R/T Der £ --> 0. 

The last sequence above states that the range of \j/i is precisely the 
subgroup of those 5 in Der k which lift to Der i?. Neggers also showed 
that Der R = Deri R if and only if every S G Der k lifts to Der R [31, 
p. 500, Corollary l ] . 

The factors of the ramification series of an unramified complete 
regular local ring R (i.e. a power series ring in n indeterminates over a 
field or an unramified fl-ring) have been determined by the writer 
[15, p . 37, Theorems 2.1, 2.2, 2.3]. I t is implicit in this work that 
Hi = GD for such a ring R. 

The following assertion regarding c.r. groups does not appear in 
the literature. I t is easily proved. One might regard it as an initial 
result from which one would proceed to study c.r. groups in case R 
is an unramified complete regular local ring. 

(15) PROPOSITION. Let R be an unramified complete regular local 
ring and let {n^ be a sequence of positive integers f or which lim* #»•= oo 
and nr^>ni+nr-ifor all r and i<r. Then Ht = G[ni] where £ = min* n^ 

VI. A more versatile method of approximating. In order to obtain 
further results a more versatile method of constructing derivation 
automorphisms would seem to be needed. Such a method is supplied 
by the following theorem for which we assume that R is a complete 
regular local ring in the unequal characteristic case. I. S. Cohen 
showed that R contains an unramified ü-ring V having the property 
V+M/M^k [3, p . 79, Theorem 11]. 
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(16) THEOREM [18, p. 38, THEOREM 4 ] . Let &QV be a set of repre­
sentatives of a p~basis £ of k. Given a sequence {<f>i} of maps of S into Rf 

there is exactly one D in 3C(F, R) for which 2? (O |s=0*, ictl. Also 
DW(V)QMn*,i^l, if and only if D<*>(S)CJ|f»«, i£ 1. 

As an immediate corollary we have the following which has been 
referred to earlier : 

(17) COROLLARY. 3C(&) lifts to 3C(V). 

The proof of Theorem 16 follows the pattern of argument used to 
establish Theorem 9 as follows. Let VQ be the (unique) sub v-ring of 
V with residue field k*, the maximal perfect subfield of k. We note 
first tha t the only derivation of V0 into R is the zero map and, hence, 
as in the proof of Proposition 7, 3C(F0, R) contains only the trivial 
higher derivation. Since S is algebraically independent over k*, $ is 
algebraically independent over V0. Thus, proceeding as in the proof 
of Theorem 9, we can define Z>* on VQ[$] by the condition Df\ s=<£i, 
i}z 1. A set Z7, of representatives of a linear basis U of k over &«>($), 
is chosen in V. For any preassigned integer n, F is a free module 
over Fo[s], modulo pnV, with free generators the set Upn. This fact 
implies that D* has a unique extension to D in 3C(F, R), again, as in 
the proof of Theorem 9 though admittedly the details here are a 
little messy. 

I t was proved by I. S. Cohen that if R is as in Theorem 16 then R 
has the form S[ir] where S— V[[Xi, • • • , Xn]] is a power series ring 
in n indeterminates over V and w is algebraic over 5 having a mini­
mal polynomial over S of a particular kind called an Eisenstein 
polynomial [3, p. 92, Theorem 17]. Thus, the potential usefulness 
of Theorem 16 for the construction of derivation automorphisms on 
such rings is enhanced by the fact that one knows how D in 3C(F, R) 
extends to a higher derivation defined on i?. Theorem 16 has been 
used in the study of the inertial automorphism group of fl-rings with 
ramification p by the writer [19] and Martin N. Heinzer [24] and 
for fl-rings with ramification 2p by Robert D. Davis [4]. 

VII . Some applications and some problems. For R an unramified 
complete regular local ring the factors Hi/d+i are all direct sums of 
copies of Der k, the number of summands depending on i and the 
dimension of R. The factors Gi/Hi are all zero, or, in the equal char­
acteristic case, they are direct sums of copies of k+, the additive 
group of k, the number of summands determined again by i and the 
dimension of R [15, p. 37, Theorems 2.1, 2.2, 2.3]. Also, as we have 
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observed before Gz> = jffi, and according to Proposition IS a large 
class of c.r. groups, defined by a natural condition on the convergence 
rate, coincide with the subset {Hi}i±i of the ramification series. 
All of this changes if R is ramified. In particular, if R is a z/-ring with 
ramification p then, in general, Go is not a term of the ramification 
series. Moreover, the factors of the ramification series, exhibit a 
good bit of variety, and are no longer dependent on k (and the di­
mension of R) [19, p. 46, Theorem 2]. As an initial investigation into 
the c.r. groups M. Heinzer has determined the relationship between 
GD, G{i] and the ramification series, again, for the «/-ring R with rami­
fication p [24]. If R is tamely ramified G{ I}=GD, a fact which is 
implied by the application of Method II of this paper for approxima­
tion of inertial automorphism since all automorphisms constructed by 
Method II are in G{;j. 

Heinzer found that the relationship between G{t} (there denoted 
Gs) and the other groups was described by a number of different 
cases [24, see table]. Always i2"iZ)G{;}Z)i?2. Generally, G{»-j is differ­
ent from GD and is not a term of the ramification series. 

Robert D. Davis [4] carried out the complete analysis of the fac­
tors of the ramification series (except G/Gi) for the general fl-ring of 
ramification 2p, using a modification of the procedures used by the 
writer in the case e = p [19]. Davis found that eight different pairs 
of factor groups H1/G2 and H2/G^ occur. However, for i > 2 , Hi/d+i 
is the group of ô in Der k which lifts to Der R (see Neggers result, 
Theorem 12) and is always given by {ôGDer k\ Ô£(TT2*/P) = 0 } . 
Considerable variety was also found in the factors Gi/Hi because of 
the possible presence of Galois maps, that is automorphisms of finite 
order. Such maps a always occur in a G~Hi gap, i.e., aÇzGu atfzHi. 

Certain conclusions can be drawn from the results discussed above. 
For example, the problem of obtaining a complete analysis of the 
factors of the ramification series of all A-rings having a given ramifica­
tion e, a problem which has been solved for the cases (e, p) = 1, e — p, 
and e = 2p, is apparently too complex to be manageable in the remain­
ing cases. This is suggested by Davis' results for e = 2p. A further 
classification of fl-rings is needed in order to divide the problem into 
manageable parts. 

At this point very little is known about the c.r. groups other than 
Heinzer's analysis of G\i) and Proposition 15. For example, by 
Proposition IS, the set of groups G{ni} for which nr^ni+nr-i is 
totally ordered by inclusion, if R is unramified and regular. I t would 
be surprising if this were true in general. 

Another interesting question is the following: Given distinct se-



1224 NICKOLAS HEEREMA [November 

quences {fii} and {mt} of positive integers such that lim< w» = lim<mt-
= oo. Is there a complete local ring J? for which G ^ j ^ G ^ } ? Also, 
what property of R determines whether or not G{n<} = G{Wt}? These 
questions are of particular interest when [ni] and {ra*} differ very 
little, e.g., îii = tni for i?*p and np — mp+l. The analysis is likely to 
be quite straightforward if one restricts attention to unramified 
regular rings only. However, the answers to questions such as these 
may give rise to interesting classifications of wildly ramified p-rings. 

Another result which would be of interest is a generalization of 
Neggers' theorem (Theorem 12) to complete regular local rings of 
dimension greater than one. 
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