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ABSTRACT. We consider a large class of arithmetical functions 
generated by Dirichlet series satisfying a functional equation with 
gamma factors. We state a general O-theorem for the average 
order of these arithmetical functions and apply the result to ideal 
functions of algebraic number fields. 

Landau [4] and Chandrasekharan and Narasimhan [3] have 
proved O-theorems for the average order of a large class of arithmeti­
cal functions. The method of proof uses finite differences and is due 
to Landau. Often, it is desired to have an O-theorem where the error 
term is a function of a certain parameter, which is the discriminant, 
for example, in the case of an algebraic number field. We state here 
a general O-theorem of this type. The method of proof is a slight 
modification of Landau's mentioned above. 

We briefly indicate the arithmetical functions under consideration. 
For a more complete description see [3]. 

Let {a(w)} and {&(w)} be two sequences of complex numbers not 
identically zero. Let {Xn} and {jun} be two strictly increasing se­
quences of positive numbers tending to oo. Put s — <x+it with a and 
t both real. We assume that 

00 00 

?(*) = X) <*(fl)Xi/ and yf/(s) = ]£ J(»)/*n*; 

each converge in some half-plane and satisfy the functional equation 

A(s)<p(s) = A(r - s)ip(r - s), 

where r is real and 
N 

Ms) = IIr(<v + ft), 

where a„>0 and j3„ is complex, v = lf • • • , N. 
In the sequel A always denotes a positive number not necessarily 

the same with each occurrence. 
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For g^O, let 

Let 

6(«) = — I J*> 

where C is a cycle encircling all of the integrand's singularities. We 
shall assume that Xn = XX̂  and /xn = Xju* where X>0 is a constant for 
the particular pair of Dirichlet series <p and ^, and where X» and fin 

are not functions of X. E.g., if we consider the zeta-function of an 
algebraic number field K, then X = d~1/2, where d is the modulus of 
the discriminant of K. Define 

r ( j + i) x„*** 

G*(*, X) » Ö(X«), 

and the error term 

P*(*, X) = il0*(», X) - Q*(*, X). 

Let cra denote the abscissa of absolute convergence of $. From [3, 
p. I l l ] , o £ è è r + l / ( 4 a ) , where 

(1) a « £ «,. 

The starting point for our investigation is an identity of Chan-
drasekharan and Narasimhan [3, p. 99]. If m is a sufficiently large 
positive integer and x>0, 

A Kn) 
(2) Am(x) - Sm(x) = 2-) - ^ ItnQtn*), 

where 5w(x) arises from the singularities of r(s)<p(s) and dmSm(x)/dxm 

= 6 W , and where 

1 /.•*+*. r ( r - J )A( J ) f H « . 
/m(#) — I ff ds, 

2iriJ cm~i<» T{m + 1 + r - *)A(r - 5) 
where c w « (ar+tn)/2<x—€, 0 < € < l / 4 a . We choose e so that the path 
of integration contains no poles of the integrand. 

We now state the 
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THEOREM. Suppose that there is a positive integer m such that (2) 
holdsy r/2 + l/Aa+m/2a>(Tat and the integrand of Im(x) has no poles 
for Co^a^Cm. Suppose that the singularities of <p (if any) are at most 
poles (finite in number). Assume that there exist real constants a, b, c, d, 
a', b', c' and d' and a function f (\) such that 

4o*(*,X), £ |*(») | «0(*-X»log-*|logX|<) 

and 
Q*(x, X) = 0(*°'X>' logo's | log X |") + ƒ00, 

uniformly as x tends to oo and X tends to 0. Let 

b-b' + r-2a 
p = (2<xa-ra + %j*0), 

2aa-ra+1/2 
and z = (x1>X1/a~~p)2a, where rj^O and a is given by (I). Define 

E(x, X) = a*'-i/2«-*x»'+' log*' x | log X \d' 
+ ffr/2-l/4a-H(2«a-ra-*)X&'+p l 0 g ' S | l og X |d . 

Assume that, for xltUt+*£Â\', 

saX* logc * | logX|* = 0{E(x, X)}, 

and that, for xl^a^^A\^ 

f(\) = 0{E(x,\)}, 

uniformly as x tends to oo awd X tends to 0. Then, if <r*>r/2 + l/4a, 

**(*, X) +/(X) - o( E I a{n) | ) + (){£(*, X)}, 

uniformly as x tends to <» and X tends to 0. Furthermore, if a(n) ££ 0, 

P*(*,X)+/(X) = 0{£(*,X)}. 

If<r* = r/2 + l/4a, we have the same results as above, except that an 
additional factor of log z must be placed in the second term defining 
£(*,X). 

EXAMPLE. Let K be an algebraic number field of degree n = fi+2r2, 
where r\ is the number of real conjugates and 2rt the number of 
imaginary conjugates in K. The Dedekind zeta-f unction for K is 
defined by 

«0 

fxto - £ F(r)S*, o- > l, 
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where F(v) is the number of nonzero, integral ideals of norm v in K. 
Furthermore, ÇK(S) satisfies the functional equation 

€(*) - €(1 - *), 

where £(s) =B*dôl2*Tri(%s)Tr*(s)ÇK(s), where B is a constant depending 
only on w, and d is the modulus of the discriminant of K. In the nota­
tion of our theorem we have a — \n and X=d"~1/2. Also, it is well known 
that 

Q*(%, d"1'*) = Q*(x, d~li\ n) = ahBd-Wx + U(P), 

where h is the class number of K, R the regulator of K, and Ci a con­
stant depending only on n. If K is an imaginary quadratic field, 
fK(0)=c2&, where c2 does not depend upon d; otherwise, fx(0) = 0. 
From [5, p. 481 ] we have 

hR ^ Ad1" log*»-1 d, 

where A depends only on n. Thus, 

| G*(*, dr^\ n) | g 4 * log^-y + | f*(0) | , 

where | fK(0)| S-dialog d if X is an imaginary quadratic field. Also, 
from [5, p. 482], 

£ F(r) ^ Ax log»-1 J, 

where A depends only on n and not on x or d. In our theorem we can 
take w = w. Also, p=—2/(w+l) . Choose 77 = (w — l)/{w(w+l)}. 
Thus, 

E(x, rf-1'2) = £(*, rf-1'2, n) = 2*<»-1>/<«+1>d1/<»+1> log»»-1 rf. 

For**' (w+1)SiM1/(n+1\ 
X log"""1 rf = x(n-l)Un+l)x2f(n+l) l o g « - l «J ^ ^ ^ ( ^ rf-1/2^ „ ) # 

For an imaginary quadratic field and x2lz ^ Adllz
t 

| f*(0) | ^ Ad1" log J = ^ ' W 6 log d £ AE(x, d~l'\ 2). 

Thus, all the hypotheses of our theorem are satisfied, and we con­
clude that 

(3) E *M - cihRd-"2x » 0(*<—1>'«,*l>iïl'<"+l> log"-1 d). 

This problem has been considered by several authors. Ayoub [l], 
for an imaginary quadratic field, showed that the left side of (3) is 



1274 B. C. BERNDT 

0(xlfz^dl^+t)+0(x'dll2+t) for every €>0. Fögels has considered the 
problem and some generalizations. (See [2] and other papers of the 
author cited there.) The best results, however, were previously 
achieved by Landau [5] who showed that the left side of (3) is 
(9(x(n~i)/(n+i)^i/(n-fi)iogn^)t Qur result is better than Landau's by a 
factor of log d. However, an examination of Landau's proof shows that 
his proof really yields the slightly better result that we give. 

Our theorem also yields results for L-series of algebraic number 
fields. 

The author is grateful to Paul Bateman and Raghavan Narasimhan 
for helpful conversations. 
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