A SHORT PROOF OF A THEOREM OF BARR-BECK

BY Y.-C. WU

Communicated by David A. Buchsbaum, June 9, 1970

Let C be a category. Let (P, \mathfrak{M}) be a projective structure [K-W] where P are the set of \mathfrak{M} -projectives and the set of P-proper morphisms. Then the following are true.

I. (P, \mathfrak{M}) is determined by a cotriple iff there is a coreflexive subcategory $\mathbf{C}' \subset \mathbf{C}$ with the properties:

(1) $|\mathbf{C}'| \subset P$,

(2) the coreflexions are in \mathfrak{M} .

II. If $S \dashv T$, where $S: C \rightarrow D$ and $T: D \rightarrow C$, and if (P, \mathfrak{M}) is a projective structure in C determined by a cotriple G, then the projective structure $(rSP, T^{-1}\mathfrak{M})$ is determined by the cotriple SGT, where rSP is the collection of retracts of SP. Moreover, if (P, \mathfrak{M}) is induced by a cotriple G, then $(rSP, T^{-1}\mathfrak{M})$ is induced by SGT.

The proofs of these two statements are omitted here. As a corollary of the above statements, we have the following.

III (Barr-Beck). The triple cohomology of groups coincides with the Eilenberg MacLane cohomology.

IV (Barr-Beck). The triple cohomology of associative algebras coincides with the Hochschild cohomology.

For detailed statements of the above, see $[B-B_1]$.

We now prove III. Let (G, π) be the category of groups over the group π . Let M be a π -module. Then there is an adjoint pair

$$(G, \pi) \stackrel{S}{\underset{T}{\rightleftharpoons}} \pi\text{-}\mathrm{Mod}$$

where $S(W) = Z\pi \otimes_{\mathcal{W}} IW$ with $IW = \ker(Z(W) \rightarrow Z)$ and $T(M) = M \times_{\varphi} \pi$, the semidirect product of M and π with respect to the π module structure $\varphi: \pi \rightarrow \operatorname{Aut}(M)$ (cf. $[B-B_2]$, where S(W) is denoted by $\operatorname{Diff}_{\pi}(W)$). Now the free group cotriple on the category Gof groups gives a cotriple on (G, π) . Let (P, \mathfrak{M}) be the corresponding projective structure. Then $(rSP, T^{-1}\mathfrak{M})$ is a projective structure in π -Mod. To show $(rSP, T^{-1}\mathfrak{M})$ is induced by the free functor cotriple on π -Mod, it suffices to show that SP contains all free π -modules. Since P are retracts of free groups and IF are free

AMS 1969 subject classifications. Primary 0830, 1310.

Key words and phrases. Category, functors, cotriples, projective structures, cohomology groups.

Y.-C. WU

F-modules (cf. [M, p. 123]), S(F) are indeed free π -modules. Now by adjointness, we have

$$[GW, M \times_{\varphi} \pi] \cong [SGW, M]$$

where G is the free cotriple on G. We can conclude that SGW is homotopic to the bar resolution of S(W) by direct computation or by invoking the following:

V. Let A be a preadditive category. Let G be a cotriple on A where the functor G is additive. Then the cotriple complex of every $B \in A$ is a projective resolution.

The statement IV can be proved similarly with the pair of functors,

$$(K\text{-alg, }\wedge) \stackrel{S}{\underset{T}{\leftrightarrow}} \wedge^{e}\text{-Mod}$$

with $S(\Gamma) = J\Gamma \otimes_{\Gamma} e \wedge e$, where $J\Gamma = \ker(\wedge \otimes_{K} \wedge^{\operatorname{opp}} \to \wedge)$, and $T(M) = \wedge e * M$ [B]. The proof goes after we observe that $J\Gamma$ is a free Γ^{e} -module if Γ is free K-algebra, [C - E, p. 181].

ADDED IN PROOF. Another way to prove III and IV is to observe that if T preserves and reflects epimorphisms, then the projective structure ($_{T}SP$, $T^{-1}\mathfrak{M}$) is an absolute projective structure if (P, \mathfrak{M}) is.

References

[B] J. Beck, Thesis, Columbia University, New York, 1967.

[K-W] H. Kleisli and Y.-C. Wu, On injective sheaves, Canad. Math. Bull. 7 (1964), 415-423. MR 29 #5882.

[E-M] S. Eilenberg and J. C. Moore, Adjoint functors and triples, Illinois J. Math. 9 (1965), 381-398. MR 32 #2455.

 $[B-B_1]$ M. Barr and J. Beck, Acyclic models and triples, Proc. Conference Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 336-343. MR 39 #6955.

[M] S. MacLane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.

[C-E] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.

 $[B-B_2]$ M. Barr and J. Beck, Homology and standard constructions, Lecture Notes in Math., no. 80, Springer-Verlag, Berlin and New York.

OAKLAND UNIVERSITY, ROCHESTER, MICHIGAN 48063