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ABSTRACT. The purpose of this note is twofold. Firstly, we 
point out an appropriate version of the Vitali-Hahn-Saks and 
Nikodym theorems for finitely additive set functions defined on a 
sigma algebra of sets. Secondly, we apply our Theorem to extend 
a recent result of James K. Brooks for countably additive vector 
valued set functions to the general finitely additive case. 

THEOREM. Let {jun} be a sequence of bounded and finitely additive 
scalar valued set functions defined on a sigma algebra 2 of subsets of a 
set S. If fx(E) =limw ixn{E) exists f or every £ £ 2 , then \x is bounded and 
additive and the additivity of the /xw is uniform in n. 

In addition, suppose l im^^o jun(£)=0 for each n, where v is a 
nonnegative finitely additive set function defined on 2. Then 
limV(jE?)̂ oMn(£) =0 uniformly in n. 

Our Theorem follows from the weak convergence theory for finitely 
additive set functions. While a proof of it can be synthesized (modulo 
an observation) from [3], [5], [6] and [7], for the readers' con­
venience we shall also refer to the discussion of the work of Soloman 
Leader and Pasquale Porcelli [ó] and [7] given in [4]. The corollary 
on p. 475 of [3] tells us that the sequence {JUW} is weakly convergent. 
Also, the (L)-space of bounded and additive functions on 2 is weakly 
complete [5, Theorem 12], so the sequence {fJLn} converges weakly to 
li. Hence JU is bounded and additive, and (cf. [4]) the weakly con­
vergent sequence {/Xn} is equi-absolutely continuous with respect to 
the bounded and additive function <p defined on 2 by 

(1) <P(E) = £ 2-*(l + I M» I (S))"11 M» I CE), 

where \ixk\ is the variation of M*. Since the sequence {/*>*—/*} con­
verges weakly to zero, Lemma 1 of [4] implies 

(2) lim, jsup* I" £ J /*(£,) - n(Ei) I ] } - 0 
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whenever {Ei} is a sequence of pairwise disjoint elements of 2. More­
over, because M is bounded and additive, ]Ctei|/*(£<)! — M ^ °°* 
Hence 

(3) l i m y | s u p ^ 2 : | M * ( £ i ) | ] } = 0 

whenever {£<} is a sequence of pairwise disjoint elements of 2. In the 
countably additive case, uniform countable additivity is equivalent 
to (3). Thus (3) represents a reasonable definition of uniform addi­
tivity for the sequence {fin}* Finally, if each fxn is absolutely con­
tinuous with respect to v, then (p is absolutely continuous with respect 
top. 

Suppose that (B is a separable Banach space over the complex 
numbers. 

COROLLARY. Let fxn be a sequence of finitely additive (%-valued set 
functions defined on 2 such that limn Mn(£) exists for every E £ 2 . 
Suppose lim,,(jE?)->oMwOE) = 0 for each n, where v is a nonnegative (real 
valued) finitely additive set function defined on 2. Then l im^-o l*n(E) 
= 0 uniformly in n. 

The proof given by Brooks in [l ] for the countably additive ver­
sion of this Corollary carries over if our Theorem is used and one 
notices that the \xn of the Corollary is bounded and additive on 2 by 
Theorem 3.2 of [2]. 
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