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1. Introduction. By Bott periodicity the classical groups, their 
classifying spaces, their homogeneous spaces, Im / and B lm J are 
infinite loop spaces, and hence the Dyer-Lashof operations act on 
their mod p homology for p a prime number. We will list the basic 
properties of the Dyer-Lashof operations in §2. These operations have 
been calculated in the homology of all these spaces, and the dual 
operations have also been computed. As applications one can cal­
culate the indecomposable elements of the homology of these spaces 
over the Dyer-Lashof algebra R and the AR-Hopf algebra maps be­
tween any two classical groups or any two of their classifying spaces. 
In this paper we will summarize our results for BU, BU (the con­
nected and infinité component versions of the classifying space of the 
infinite unitary group), 0, 5 0 , B Im / a n d Im / . 

These results have been applied to the study of H% (F) and H^ (BF) 
by J. P. May [9] and I. Madsen [7]. They are also useful in cobor-
dism theory (see for example T. torn Dieck [5, p. 396]). 

The author is very grateful to J. Peter May for his guidance, sug­
gestions and generosity with his time throughout the preparation of 
this paper. 

NOTATION. All elements of a graded object will be indexed by their 
degree with the exception of the Chern and Wu classes. All homology 
and cohomology will have Zp coefficients for p a prime number. When 
a result differs for p an odd prime and p = 2 then the result f or p = 2 
will be placed in square brackets. 

2. The Dyer-Lashof operations. The homology of an infinite loop 
space B has natural homomorphisms Qi\H4(.{B)-J>'H^{B) for i ^ O of 
degree 2i{p — 1) [of degree i] which have been studied by S. Araki and 
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T. Kudo [3], W. Browder [4], E. Dyer and R. Lashof [ó], G. Nishida 
[10] and J. P. May [8]. Theorem 1 summarizes some of their results. 

THEOREM 1. The Dyer-Lashof operations satisfy the following prop-
per ties: 

(a) <2°(0)=0 and <2*'(<Ê)=0 if i>0 where </>EH0(B) is the identity 
element for the loop product in H% (B). 

(b) Q*(* )=0 i f2 t<deg* [ifi<degx]. 
(c) Qi(x)=xpif2i = degx [ifi = degx]. 
(d) cr^oQi = Qioa^ where cr^:IH^(QlB)—^H^l(B) is the homology sus­

pension map. 
(e) (Multiplicative Cartan formula) Qr(xy) =]Ci-o Qi(x)Qr"i(y). 
(f) (Comultiplicative Cartan formula) 

t o Qr(x) = E Z Q'(*0 ® QrW) 

where \//(x) =^Z x'®x". 
(g) X°(?* = Q*°X wfe r̂e x ^ ^ conjugation of H^ (B). 
(h) (Nishida relations) Let P% :H*(B)-*H*(B) of degree - 2s(p-1) 

[of degree —s\be dual to the Steenrod operation P*. Then 

P* o Qr = X) (-l)t+*(* ~ M '(* -l)-ps + pi)Qr~s+ioPÎ 

We use the convention (i, j) = ( i+ j ) \/i \j lifi^O and f ^ 0 while (i} j) = 0 
ifi<0orj<0. Thus the above sum is taken over all integers i. 

(i) (A dem relations) Ifa>pb then 

Qa o Qb = X) ( - l)a+i(pi - a, a - (* - l ) i - i - l ) ^ 6 " * o <)<. 

DEFINITION 2. The Dyer-Lashof algebra R is the quotient 
algebra F/J where F is the free associative algebra generated by 
{Qr, $Qr+l \r ^ 0} [by {Qr \ r è 0} ], and J is the ideal of F consisting of 
all elements which annihilate every element of every infinite loop 
space. 

3. Results on BU and BU. Recall that H*(BU) =P{cn\n^l} as 
algebras where cn is the Chern class of degree 2n, c0 = l and \p(cn) 
=]C?-o Ci®cn„i. Let a2» =(£?)* and P2n = c» in the dual basis of the 
basis of H*(BU) which consists of monomials in the Chern 
classes. Then H^(BU)=P{a2n\n^l} as algebras with ^(a2n) 
~]C?-o Ö2*®ö2n-2t, and {p2n|w^l} is a basis for the primitive ele­
ments of H*(BU). For r^O we have the duals of the Dyer-Lashof 
operations Qr*:H*(BU)-*H*(BU) of degree - 2 r ( £ - l ) [of degree 
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—Y ] . Theorems 3 and 4 are our main results on B U. 

T H E O R E M 3 . InH*(BU)forr^Oandn^l, 

Ör(P2n) = ( - l ) r + n ( w - 1, f - W)p2n+2r(j>-l) 

[Ö2r(P2») « (» - 1, f - W)p2»+2r], 

and 

ör(ö2n) = (—l)r+w+1(w> r — w — l)a2n+2r(p-i) + decomposaUes 

[Q2r(#2n) = (w, r — n — l)a2n+2r + decomposables]. 

T H E O R E M 4 . InH*(BU)forr^Oandn^l, 

Q*(cn) = (- l) r + w(w - r(£ - 1) - 1, pr - ttK-ro>-i) 

[(?*'(£») = (n — r — 1, Ir — w)c*_r]. 

Theorem 3 is proved by using the comultiplicative Cartan formula, 
the Nishida relations and Bott periodicity. An algorithm can then be 
given for computing Qr(a2n) [Q2r(#2n)] by induction on n+r(p — l) 
and for fixed n+r(p — l) by induction on n using the following seven 
properties that the Qr satisfy on H*(BU): (a), (b), (c), (e), (f), (h) of 
Theorem 1 and Theorem 3. Theorem 4 is now proved by defining 
homomorphisms R% on H*(B U) by 

R**(cn) = ( -1)* "(n — s(p - 1) - 1, ps - tt)c„_.(ip_i) 

[R*(cn) = (n — s — 1, 2* — w)c„-,] 

and insisting that the R% satisfy the multiplicative Cartan formula. 
Then the dual maps R* can be shown to satisfy the above seven prop­
erties. Hence R8 = Q8 for all s a O by the algorithm for computing the 
Dyer-Lashof operations on H*(B U). 

Recall that H*(BXJ)=H*(BU)®ZP(Z) as Hopf algebras where 
ZP(Z) is the group algebra of the integers over Zp. Elements of 
i ï*(BU) are written x® [i] for xEH*(BU) and i&ZCZp(Z). Since 
the canonical inclusion BU—+BU induces the map x—»x®[0] in 
homology for xÇzH*(BU), the following theorem together with our 
knowledge of the Dyer-Lashof operations on H*(BU) tell us how the 
Dyer-Lashof operations act on i ï*(BU). 

THEOREM 5. In i7*(BU) for n è l , (?n(l® [l])=*Yn(p2(P-i))® [p] 
[Q2n(l ® [l ]) =ö2n® [2]] where 7n(p2ü>-i)) is ( 4 - i )* in the dual basis of 
the basis of H*(B U) which consists of monomials in the Chern classes. 
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We will now sketch the applications of the preceding theorems. 
Define the R-indecomposables of H*(B U) by 

Q*H*(BU) - IH*(BU)/[(IR)(IH*(BU)) + (IH*(BU))*]. 

The following theorem is a consequence of Theorem 3. 

THEOREM 6. {a2*|&àl, k=peh, h = s(p — l)+r, l£r£p — l, s 
=]C?-o stp*t O^Si^p — 1, Si = Si if Si5*0, §i~p if s» = 0 and if s?*0 
then sn7*Q and r ^ 5 0 è • • • è$n} [{^2*|fe^0}] is a Zrbasis for 
Q*H*(BU). 

If il is a connected Hopf algebra and f:A-*A is a morphism of 
Hopf algebras then ƒ is said to be locally nilpotent if for all a(EA with 
deg a>0 there is a positive integer n(a) with/n(o)(a) =0 where/° = 1, 
ƒl = ƒ and fk+l ~fofk f or k â 1. In this case every element of Zp [ [f] ] is a 
well-defined Hopf algebra endomorphism of A where addition is 
given by Whitney sum, i.e., g+h—$og®ho<fr. The composite map 
<j>:BU—*BSp-+BU induces a locally nilpotent endomorphism <£* of 
21* (.B U; Z2). Z2 [ [</>*] ] is the ring of all A-Hopf algebra endomorphisms 
of H*(B U] Z2) and the ring of all AR-Hopf algebra endomorphisms of 
H# (B U; Z2). If p is odd then B Up -JJjZoB Up,i as infinite loop spaces 
by J. F. Adams [l, Lecture 4]. There is a locally nilpotent AR-Hopf 
algebra endomorphism <£»• of H*(BUPti) for 0^i^p — 2 such that 
Zp[[<£»]] is the ring of all A-Hopf algebra endomorphisms of 
H*(BUp,i) and the ring of all AR-Hopf algebra endomorphisms of 

4. Results on 0 and SO. Recall that H*(SO; Zp) =E\din+z\ wèO} 
as Hopf algebras if p is an odd prime and H*(SO; Z2) = E {un\ n ̂  1} as 
algebras with u0 = l and \p(un) =]C?-o «<®«n-<. Hence H*(SO; Zp) 
= E J dtn+z I n è 0} as Hopf algebras if p is an odd prime and H* (SO ; Z2) 
=P{e2n+i|ttè0} as Hopf algebras. We use the convention that 
the (w+l)st Pon try agin class suspends to — d*»+3. Let {£2n-i|w£=l} 
be the primitive elements of H*(SO; Z2). From the analogue of 
Theorem 4 for H*(BO) we deduce the following three results by using 
the cohomology suspension map. 

THEOREM 7.1nH* (SO) forr^O and n^O, 

(?*(<£«+*) - (~l)\2n - r(p -l) + l,pr-~2n~ 2)tf!U2f(p_1)+l 

[Q*(*2n+l) •» (n - f, If — M — l)e 2 n _2r+l] . 

COROLLARY 8. Jw H*(SO; Z„) /or £ aw odd prime, r è 0 <wd n è 0, 
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Qr(d4n+t) = ( - l ) r ( 2 n + l , f - 2» - 2)J4n+2r(p-l)+3. 

COROLLARY9. Iniï*(50;Z2)forr^Oandnè 1, 

ör(^n) = (», r — » — l)wr+n + decomposables 

and 

Ö2 r(p2n-l) = ( » — 1, f — W)p2n+2r~l. 

THEOREM 10. /»H*(SO;Z 2 ) forr^Oandn^l , 

Qr(un) = S (n — ay r — w — 6 — l)#aw&wc. 
a-ffc-f c=r+n 

PROOF. This theorem follows from the first assertion of Corollary 9, 
the comultiplicative Cartan formula and the binomial coefficient 
identities of J. Adem [2, p. 233]. 

Recall that H*(0; Z2) =H*(SO; Z2) ®Z2(Z2) as Hopf algebras. For 
x £ i f * ( S O ; Z2) write x and x® [ — 1 ] to designate elements in the two 
components of iT*(0). The multiplicative Cartan formula, Theorem 
10 and the following theorem give complete information on the Dyer-
Lashof operations on H*(0; Z2). 

THEOREM 11. InH*(0;Z2), Qn(l®[-l])=unfor n^O. 

5. Results on B I m / and I m / . Throughout this section p will 
be an odd prime. J. Stasheff [ l l ] has constructed infinite loop spaces 
B Im J and Im / . He has shown that H*(B Im J)=H*(BO)Pt0 

®H*(SU)Pt0 and H*(Im J)=H*(BO)p,o®H*(SO)Ptl/2(p-Z) as Hopf 
algebras with each factor closed under pr

y for all r ̂  0. Recall that 
H*(BO)p,o=P{qn\n^:l} as algebras with deg qn = 2n(p — l), #o = l 
and \f/(qn) = X X o qi®qn-i- Then qn are the Wu classes which are 
defined by qn = $ ~ 1 o Pn o $(1) where $ is the Thorn isomorphism. 

THEOREM 12. Let p be an odd prime. Then 

H*(BImJ) « H*(BO)p,o ® H*(SU)Ptù 

and 

H*(ImJ) = E*(BO)p,o ® H*(SO)Ptl/2(p-3) 

as Hopf algebras with each factor closed under Pr and Qr, for all r^O. 
In particular for r^O and n*zl, 

QT*(qn) = ((n - r)(p - 1) - 1, fr - n(p - l))<Zn-r. 

Detailed proofs and statements of all the above results and many 
similar ones will appear elsewhere. 
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