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ON THE HOMOLOGY OF A FIXED POINT SET 

BY R. J . KNILL 1 ' 2 

Communicated by Stephen Smale, September 3, 1970 

The objects to be studied are the continuous functions of the sort 
glXXT—>X. Here X is an ANR(ikf) (for metric spaces) such as a 
manifold or function space, and T is any normal Hausdorff space, but 
which in nature would be acyclic [ l l ] , or a semigroup [4], [6], and 
[14]. For an open subset 0 of XX T define & fixed point of g\ 0 to be a 
point x such that there exists (x, t) in 0 which is a solution to g(xf t) 
=x. The closure of the set of fixed points of g\ 0 is Fix g\ 0, and the 
set of solutions (x, t) in 0 is S(g\ 0). I t will generally be assumed that 
the closure of g(0) is compact and that S(g\0) is closed in XXT. 
These conditions will be signaled by the terminology "g is non-
degenerate on 0." Then there is a homomorphism induced by g} 

e*(g):H*(T,To)->H*(Fixg\0), 

where XX To is disjoint from S(g\ 0 ) . This homomorphism generalizes 
the Leray 0-homomorphism of rings of pseudocycles [ i l , Chapter 
VII ] and the index cycle of Fuller [4, p. 135]; however these rela-
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tionships are to be discussed elsewhere [9]. Here there will be given a 
global formula for 0*(g) analogous to the Lefschetz trace formula, 
and it will be applied to obtain, in a special case, information about 
the Cech homology of Fix g which is a homotopy invariant of g. 

The author gratefully acknowledges several helpful conversations 
with Professors Jean Leray, A. Dold, and M. Zisman, and cor­
respondence with Professor F. Brock Fuller. 

1. The generalized Lefschetz formula. Let g be nondegenerate on 
0 = XXT and let K be a. compact subset of X which contains the 
image of g. Since X is an ANR(ikf) the inclusion i:K<ZX induces a 
homomorphism of Cech homology groups, i*, which has a finite 
dimensional image (coefficients are always taken in a fixed field Q). 
Choose for each w ^ O a finite basis {i*(Zi) }y for the image of (i*)n, 
and let {zi}y be a family of linearly independent elements of the 
Cech cohomology Hn(X) orthonormal to {i*(zi)}y. Then for any 
ZmÇzHm(T) and each i*(Zj

n) there is a unique expression 

g*(i*(Zn) <2> Zm) = X) bjkZn+m, bjk G Q. 
k 

The coefficients bjk depend on Zm as well as j and k. Here Zm is the 
natural image of Zm in Hm(T) under the natural transformation 
JEZ*—>H*. 

DEFINITION. The A-homomorphism induced by g of H*(T) into 
H*(K) is defined at ZmGHm(T) as 

A*(g)(Zw) = X ( - 1 ) % / ( Z y ) H Zn+m 
jk 

where C\ denotes cap product. 
Comment. To see the relationship of A*(g) to the Lefschetz trace 

formula, take m = 0. If T is a point and X is connected so that 
Q = H0(T) =HQ(X), the Lefschetz number of g is A*(g)(1) where 1 is 
the unity of Q [7] and [lO]. 

THEOREM 1. Let g be nondegenerate on XXT with an image which is 
contained in a compact set K. Let j : F i x gCK be inclusion. Then 
A*(g)=j*o0*(g). 

2. Localization of A*(g) :0*(g|O). Except for the use of Cech 
homology H* as well as singular homology i?*, this section is pat­
terned on the elegant treatment [2 ] of the local fixed point index of 
Leray. For the moment then, X is an open subset of a Euclidean 
space, Rn, of dimension nt g\XXT-*Rn is nondegenerate on an open 
subset O of X X r , and the image of g\ O is contained in a compact set 
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K. An orientation is chosen for Rn and this determines [2 ] a funda­
mental class 6KEHn(Rn, Rn-K). Let 

Or - *) X gKl(0, O - S(g\0)) -+ (R", R» - {0}) X K 

be defined by Or —g) XgK(x, t) = (x—g(x, t), g(x, t)), (x, t) GO. 
Let T0<ZT be such that X X T0 is disjoint from S = S(g| 0) . Denote 

Fix g\0 by F. For ZmGHm(T, T0), (singular homology) 6FXZm 

is an element of H*[(Rn, Rn-F)X(T, T0)]f and H(0FXZm) 
E:H*(RnXT, RnXT — S), where i* is induced by inclusion. By ex­
cision we may regard i*(0i?XZm) as an element of i?*(0, 0 — 5), 
so that [Or —g) X£#]*£*(OFXZm) is a well-defined element of 
ü*[(fün, i?n — {o}) XK]. Thus we have defined a homomorphism 

[ (*• -* ) X » ] * o i * o ( 0 , X '):H^T,T0)-^H4(R-,R-- { 0 } ) X 4 

Evidently this does not depend on the choice of open set 0 which 
contains 5 as long as K contains g(0). Also if j:K(ZK', then 

j*[(* — g) X git]* o u o (Op X •) = [Or — g) X gK']* o i* o (Op X •)• 

As a consequence there exists a homomorphism 

[(*-g) XgF]*oi*o(0FX -):H*(T, TQ)-*H*[(R«, R" - {O}) X F] 

which is defined to be the inverse limit of the system of homo-
morphisms 

{[Or ~~ g) X g#]* o h o (ÖF X •) :i£ is a compact neighborhood of F } . 

DEFINITION. Let 0*(g|O) = (0{O}X 0 ~ 4 0 r - g ) X g F ] * o i* o ( Ö F X - ) « 

Then 

0*(g |O):#*(r , r 0 ) -* f f* (F ) . 

PROPOSITION 2.1. 0*(g| 0) depends only on the term of g at S(g\ 0) . 

PROOF. This is an immediate consequence of its definition. 
The techniques of [2 ] provide elementary proofs for the next four 

properties of 0*(g|O): Additivity, Multiplicativity, Naturality and 
Homotopy Invariance. 

Additivity. If 0 is the disjoint union of open sets Oi and O2, then 

#*(Fix g\0) = H*(Fixg\O0 e £T*(Fix g\02) 

and 

O*(g\0) = 0 * ( d ° i ) ®(g\0*). 

Multiplicativity. Let g:XX T->Rn and g':X1 X T'->Rn' be as in the 
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definition of 0* with g nondegenerate on OCX XT and gf nonde-
generate on O' CX' X V. Then 

Fix g X g' \0 X 0 ' = (Fix g \0) X (Fix g' \0') 
and 

0*(g X g' \0 X 0') = 0*(g|O) ® 0*(g' | 0 ' ) . 

Naturality (in T). Suppose that g is nondegenerate on OCX XT 
and ƒ : V->T is a map. Let 0 ' = (1 Xf)~l(0). Then g o (1 X/) is non-
degenerate on 0'. Let f (TQ) C. To. Then 

F i x £ o ( l Xf)\0' = F i x g | 0 

and 

0*(go (1 X ƒ) |0') = 0*(g|O) o /* :F*( r ' , ToO ->^*(Fix g |0) . 

Homotopy Invariance. Suppose that ^ : Z x r ~ » 2 ? n , O ^ s ^ l , is a 
homotopy. I t is said to be nondegenerate on OCX XT if the map 
(#, t, s)—>gs(x, t) is nondegenerate on OXI, and i t s^x^J / w # / set is 
F = Cl(U.Fix g.| 0 ) . Let V.Fix gs\ OCF be inclusion. Then 

(io)*o6*(go\0) = (ii)*o0*(gi|O). 

Next to the existence of a global index, the commutativity prop­
erty provides one of the most important aids to the computation of a 
fixed point index, and one which also enables one to extend 0* to 
ANR(ikf) spaces X. In Theorem 2 is given a form of this property 
sufficient to accomplish this extension, using the techniques of [2] 
for Euclidean neighborhood retraits and of [3], [12, Theorem 2] and 
[16] for ANR(M) spaces. 

THEOREM 2. (COMMUTATIVITY). Suppose given g:XXT->Rn, as in 
the definition of 0*(g| 0 ) , and given X'QRn' open, and a map r\X'-*X 
and compact sets KC.Rn, K'CRn' such that KZ)g(0), and r\Kf is a 
homeomorphism of K' onto K. Letj=(r\K')~1, and let 0/ = (rXl)~10. 
Then j o gorXl is nondegenerate on 0' and d*(j o g o r X l | 0') 
=j*0*(g|O), 

SKETCH OF PROOF. The simplest case (case 1) occurs when r is an 
orthogonal projection of Rn' onto Rn. This case is computational and 
left to the reader. Case 2 is when n'^n and r is inclusion of Rn' in 
Rn. This is reducible to case 1 by a homotopy go (hsXl), O ^ s g l , 
where hs:R

n—>Rn, O^s^gl , is the linear homotopy of the identity to 
the orthogonal projection of Rn to Rn'. The homotopy property thus 
obtains case 2. In the general case one may assume that X and X1 

are closed polyhedral neighborhoods in Rn and Rn' of K and K', 
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respectively, which do not contain the origin. The mapping cylinder 
Zr of r is the set in Rn@Rn' of points either of the form x®0 or of the 
form r(x') © (1 —a)x', x'E-X7, 0 Sa S 1. Likewise the mapping cylinder 
Zj is denned and is contained in Zr. Now g and j o gorXl have the 
obvious extensions to Zr (and to a neighborhood of Zr since the latter 
is an ANR) and these extensions are homotopic by the linear homo-
topy that moves K to K' through Zy. By homotopy and case 2, 
Theorem 2 is proven. 

3. Agreement with A*(g). As in paragraph 1, g:XX T—>X is a map 
with image contained in a compact set K,j: Fix gCK is inclusion and 
X is an ANR. As usual [2], it may be assumed that X is in fact 
an open subset V of Rn. Let d:RnXRn-*Rn be defined by d(x, y) 
= x-y. Then d maps ( 7 , 7 — i Q X i H n t o (i?w, i ? n - {o}) and induces 

J*:#*[(F, F - K) X K]->H*(R», R« - {o}). 

By the Künneth rule H*[(V, F-2QX-K:] =27*(7, V-K)®H*{K). 
Define 4 : # * ( F , F - i ^ [ # * ( # ) ] * as in [2]; ^(»)(*) = d*(v®k). 
For a graded Q-module (that is vector space) M> define 

<dM:H*(V, V - K) ® M-> Hom(F«(JQ, i f) 

by the rule ®M(v®m)k = ( — iym\W(â*(v)(k))m1 where " | • | " means 
"dimension of." A thorough discussion of this sign convention is 
given in [13, I §l] and its understanding is necessary for what 
follows. By rephrasing Lemma 4.2 of [2] one obtains 

LEMMA 3.1. If i'.KQV is inclusion, then ®Hv transforms A*(0^) 
into i*. Here the subscript HV means H*(V). 

LEMMA 3.2. If K is a finite polyhedron, then for any M, ®M is a 
natural equivalence. In particular <?* = ©Q is a natural equivalence. 

PROOF. By excision we may assume V is so small that there 
is a retraction r\ V-+K. Then r* o ®HV(A*(OK)) = r* O i* = iden­
tity of H*(K). But ®M is natural in M, and it follows that 
®HE:[(l®r*) OA*(6K)] is the identity of H*(K). Invoking naturality 
again, it follows that &HK is an epimorphism. But H*(V, V—K) and 
H*(K) have the same dimension (Poincaré duality). Thus 
i7*(F, V-K)®H*{K) and Horn (H*(K), H*(K)) have the same 
finite dimension and ®HK must be an isomorphism. But © is a natural 
transformation implying then that © is a natural equivalence, as 
claimed. 

Let K be a polyhedron in R1, and let dXirK'*(V, F—K) 
->(JRn, Rn- {o})XK be defined by dXTcK{x} y) = (x-y, y). Let A: 
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K-+KXK be the diagonal map. Then the cap product of ZPG [H*(K) ]* 
with Zp+m&H*(K) is ZpC\Zp+m = (e®l)(Zp®A*(Zp+m)) where 
e(Zp®Zp)—Zp(Zp) is the evaluation. If we use <?* to identify 
H*(Vy V—K) with [H*(K)]*f then e becomes d* and one has that 
C\ becomes ((IXTK)*. Formally, there is the 

LEMMA 3.3. If K is a finite polyhedron, and ZnGH*(K), Zn+m 
<EH*(K), then 

Znr\Zn+m = (6* X O " 1 ^ X VK)*(£\7P)X Zn+TO). 

PROOF OF THEOREM 1. We may assume X = V is open in JRn. Since 
Fix g is the intersection of polyhedral neighborhoods, its Cech homol­
ogy is the inverse limit of such neighborhoods. We may thus assume 
that K is a polyhedron and H* (K) = i7* (K). Let i : K—> V be inclusion. 
For a®b®Zm in H*(V, V-K) ®H*(V) ®Hm(T), the naturality of 0 
implies that 

&HK[(1 ® g*)(* ®b® Zm)\ = g*(Z») o ®Hv(a ® i ) , 

where &(%*): H*(V)-*H+(K) is defined as g*(Zm)(&) = (~l)m , & 1 

•g*(6®Z«). But then 

(1 ® g*)(A*(0#) ® Zm) = @ M ( M Z » ) ot*), 

by Lemma 3.1. Applying cap product to the left side of this equality 
yields by 3.3, 0*(g)(Zm), and on the right side it yields by direct 
calculation A*(g)(Zm). This proves Theorem 1. 

THEOREM 3 (CHANGED IN PROOF). Suppose that X is a connected 
compact polyhedron and Hk(X)—0 for k>n. Let g:XXX-+X be a 
multiplication with left homotopy identity. Then Hn(X) is a direct 
summand of i?»(Fix g). 

PROOF. From the existence of left homotopy identity one computes 
that A*(g) is the identity on Hn(X). From Theorem 1, Hn(X) is a 
direct summand of JÏ»(Fix g). 

ADDED IN PROOF. If X = Mn is a closed w-manifold, Theorem 3 
implies that Fix g = Mn. Tha t was the original form of my Theorem 3, 
however, R. F. Brown pointed out to me that Fix g = Mn may be 
easily obtained by degree theory. 
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