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1. Introduction. In 1937 Witt [9] defined a commutative ring 
W(F) whose elements are equivalence classes of anisotropic quadratic 
forms over a field F of characteristic not 2. There is also the Witt-
Grothendieck ring WG(F) which is generated by equivalence classes 
of quadratic forms and which maps surjectively onto W(F). These 
constructions were extended to an arbitrary pro-finite group, ©, in 
[ l ] and [6] yielding commutative rings W(®) and WG(®). In case ® 
is the galois group of a separable algebraic closure of F we have 
W(®) = W(F) and WG(®) = WG(F). All these rings have the form 
Z[G]/K where G is an abelian group of exponent two and K is an 
ideal which under any homomorphism of Z[G] to Z is mapped to 0 
or Z2n. If C is a connected semilocal commutative ring, the same is 
true for the Witt ring W(C) and the Witt-Grothendieck ring WG(C) 
of symmetric bilinear forms over C as defined in [2], and also for the 
similarly defined rings W(C, J) and WG(C, J) of hermitian forms 
over C with respect to some involution J. 

In [5], Pfister proved certain structure theorems for W(F) using 
his theory of multiplicative forms. Simpler proofs have been given in 
[3]> [?]> [8]. We show that these results depend only on the fact that 
W(F)~Z[G]/K, with K as above. Thus we obtain unified proofs for 
all the Witt and Witt-Grothendieck rings mentioned. 

Detailed proofs will appear elsewhere. 

2. Homomorphic images of group rings. Let G be an abelian torsion 
group. The characters x oî G correspond bijectively with the homo-
morphisms \//x of Z[G] into some ring A of algebraic integers generated 
by roots of unity. (If G has exponent 2, then A =Z.) The minimal 
prime ideals of Z[G] are the kernels of the homomorphisms \{/x:Z[G] 
—*A. The other prime ideals are the inverse images under the ^ x of the 
maximal ideals of A and are maximal. 
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THEOREM 1. If M is a maximal ideal of Z[G] the following are 
equivalent : 

(1) M contains a unique minimal prime ideal. 
(2) The rational prime p such that MC\Z—Zp does not occur as the 

order of any element of G. 

In the sequel K is a proper ideal of Z[G] and R denotes Z[G]/K. 

PROPOSITION 2. The nil radical, Nil R, is contained in the torsion 
subgroup, RK We have Rt = Nil R if and only if no maximal ideal of R 
is a minimal prime ideal and Rt = R if and only if all maximal ideals 
of R are minimal prime ideals. 

THEOREM 3. If p is a rational prime which does not occur as the 
order of any element of G, the following are equivalent: 

(1) R has nonzero p-torsion. 
(2) R has nonnilpotent p-torsion. 
(3) R contains a minimal prime ideal M such that R/M is a field of 

characteristic p. 
(4) There exists a character % of G with 07*\l/x(K)HiZC.Zp. 

In addition, suppose now that G is an abelian g-group for some 
rational prime q. Then Z[G] contains a unique prime ideal M0 which 
contains q. 

COROLLARY 4. The following are equivalent : 
(1) RHsq-primary. 
(2) Let M be a maximal ideal of R which does not contain q, then M 

is not a minimal prime ideal. 
(3) For all characters % of G, \f/x(K)r\Z=0 or Zq^*\ 
(4) KQMo and all the zero divisors of R lie in M0 = M0/K. 

THEOREM 5. .R'CNil R if and only if KC\Z=0 and one (hence all) of 
(1), (2), (3), (4) of Corollary 4 hold. 

THEOREM 6. If K satisfies the conditions of Theorem 5, 
(1) jR« = Nil-R, _ 
(2) R*5*0 if and only if M0 consists entirely of zero divisors, 
(3) Ris connected. 

THEOREM 7. The following are equivalent*. 
(1) For all characters x we have yJ/x(K)C\Z~Zqn^x). 
(2) R — R* is a q-torsion group. 
(3) KHZ=Zqn._ 
(4) MoZ)K and M0 is the unique prime ideal of R. 
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These results apply to the rings mentioned in §1 with g = 2. In 
particular, Theorems 5 and 6 yield the results of [5, §3] for Witt rings 
of formally real fields and Theorem 7 those of [5, §5 ] for Witt rings of 
nonreal fields. 

By studying subrings of the rings described in Theorems 5-7 and 
using the results of [2] for symmetric bilinear forms over a Dedekind 
ring C and similar results for hermitian forms over C with respect to 
some involution / of C, we obtain analogous structure theorems for 
the rings W(C), WG(C), W(C, J) and WG(Ct J). In particular, all 
these rings have only two-torsion, R* = Nil R in which case no maximal 
ideal is a minimal prime ideal or R*=R in which case R contains a 
unique prime ideal. The forms of even dimension are the unique prime 
ideal containing two which contains all zero divisors of R. Finally, 
any maximal ideal of R which contains an odd rational prime con­
tains a unique minimal prime ideal of R. 

3. Topological considerations and orderings on fields. Throughout 
this section G will be a group of exponent 2 and R = Z[G]/K with K 
satisfying the equivalent conditions of Theorem 5. The images in R of 
elements g in G will be written g. For a field F let F = F— {0}. Then 
W(F)=Z[F/F2]/K with K satisfying the conditions of Corollary 4. 
In this case K satisfies the conditions of Theorem 5 if and only if F is a 
formally real field. 

THEOREM 8. Let X be the set of minimal prime ideals of R. Then 
(a) in the Zariski topology X is compact^ Hausdorff, totally dis­

connected. 
(b) X is homeomorphic to Spec(Q®zR) and Q®zR=C(X, Q) the 

ring of Q-valued continuous functions on X where Q has the discrete 
topology. 

(c) For each P in X we have R/P^Z and Rred = R/Nil(R) C C(X9 Z) 
C.C(X, Q) with C(X, Z)i'Rred being a 2-primary torsion group and 
C(X, Z) being the integral closure of Rred in Q<8>zR. 

(d) By a theorem of Nöbeling [4], Rred is a free abelian group and 
hence we have a split exact sequence 

0 -> NilCR) - * R - * Rred -> 0 

of abelian groups. 

Harrison (unpublished) and Lorenz-Leicht [3 ] have shown that the 
set of orderings on a field F is in bijective correspondence with X 
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when R — W(F). Thus the set of orderings on a field can be topologized 
to yield a compact totally disconnected Hausdorff space. 

Let F be an ordered field with ordering < , F< a real closure of F 
with regard to < , and or< the natural map W(F)—^W(F<). Since 
W(F<)Ç~Z (Sylvester's law of inertia), Ker a< = P< is a prime ideal of 
W(F). Let the character x<GHom(F/F 2 , ± 1) be defined by 

X<(aF*) = 1 if a > 0, 

= - 1 if a < 0 . 

PROPOSITION 9. For u in R the following statements are equivalent: 
(a) u is a unit in R. 
(b) u s ± 1 mod P for all P in X. 
(c) u = ± g+5 wi/ft g in G and s nilpotent. 

COROLLARY 10 (PFISTER [5]). Let F be a formally real field and 
R=W(F). Then u is a unit in R if and only if <r<(u) = ± 1 for all 
orderings < on F. 

Let E denote the family of all open-and-closed subsets of X. 
DEFINITION. Harrison's subbasis H of E is the system of sets 

W(a) = { P G l | ^ - l (mod P)} 

where a runs over the elements ±g of R. 
If F is a formally real field and R= W(F) then identifying X with 

the set of orderings on F one sees that the elements of H are exactly 
the sets 

W(a) = { < o n F | a < O}, Ö G A 

PROPOSITION 11. Regarding Rred as a subring of C(X, Z) we have 

Rred = Z-l+ S Z-2fu 

where fu is the characteristic f unction of UQX. 

Following Bel'skiï [l ] we call R = Z[G]/K SL small Witt ring if there 
exists g in G with 1+g in K. Note that for F a field, W(F) is of this 
type. 

THEOREM 12. For a small Witt ring R the following statements are 
equivalent: 

(a) E = H. 
(b) (Approximation.) Given any two disjoint closed subsets Yh Y2 of 

X there exists g in G such that g = — 1 (mod P) for all P in Yx and g = 
l(mod P) for all Pin F2. 
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(c) JRred = Z . l + C(X,2Z). 

COROLLARY 13. For a formally real field F the following statements 
are equivalent : 

(a) If U is an open-and-closed subset of orderings on F then there 
exists a in F such that < is in U if and only ifa<0. 

(b) Given two disjoint closed subsets Fi, F2 of orderings on F there 
exists a in F such that a<0for < in Yi and a>0for < in F2. 

(c) W(F)r« = Z.l + C(X,2Z). 

PROPOSITION 14. Suppose F is a field with F/F2 finite of order 2n. 
Then there are at most 2n~1 orderings of F. 

If F is a field having orderings < i , • • • , < n we denote by a the 
natural map W{F)-^W{F<X)X • • • XW(F<n)=ZX • • • XZ via 
r-»(o"<iM, ' • • ,c<«M)-

THEOREM 15. Let < i , • • • , <M be orderings on a field F. Then the 
following statements are equivalent : 

(a) For each i there exists a in F such that a< »• 0 and 0 < j a for j ^ i-
(b ) X<i> ' ' ' i X<n

 are Unearly independent elements of 
Hom(F/P, ±1). 

(c) Imo"={(ôi, • • • , bn)\ bi^bj (mod 2) for alii, j}. 

If F is the field R((x))((y)) of iterated formal power series in 2 
variables over the real field, F has four orderings, W(F) = W(F)red is 
the group algebra of the Klein four group, and the conditions of 
Theorem 15 fail. 

COROLLARY 16. Suppose F is afield with F/F2 finite of order 2n. If 
condition (a) of Theorem 15 holds for the orderings on F then there are at 
most n orderings on F. 
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