STRUCTURE OF WITT RINGS, QUOTIENTS OF ABELIAN GROUP RINGS, AND ORDERINGS OF FIELDS

BY MANFRED KNEBUSCH, ALEX ROSENBERG1 AND ROGER WARE2

Communicated October 19, 1970

- 1. Introduction. In 1937 Witt [9] defined a commutative ring W(F) whose elements are equivalence classes of anisotropic quadratic forms over a field F of characteristic not 2. There is also the Witt-Grothendieck ring WG(F) which is generated by equivalence classes of quadratic forms and which maps surjectively onto W(F). These constructions were extended to an arbitrary pro-finite group, &, in [1] and [6] yielding commutative rings $W(\mathfrak{G})$ and $WG(\mathfrak{G})$. In case \mathfrak{G} is the galois group of a separable algebraic closure of F we have $W(\mathfrak{G}) = W(F)$ and $WG(\mathfrak{G}) = WG(F)$. All these rings have the form $\mathbf{Z}[G]/K$ where G is an abelian group of exponent two and K is an ideal which under any homomorphism of Z[G] to Z is mapped to 0 or \mathbb{Z}^{2n} . If C is a connected semilocal commutative ring, the same is true for the Witt ring W(C) and the Witt-Grothendieck ring WG(C)of symmetric bilinear forms over C as defined in [2], and also for the similarly defined rings W(C, J) and WG(C, J) of hermitian forms over C with respect to some involution J.
- In [5], Pfister proved certain structure theorems for W(F) using his theory of multiplicative forms. Simpler proofs have been given in [3], [7], [8]. We show that these results depend only on the fact that $W(F) \cong \mathbb{Z}[G]/K$, with K as above. Thus we obtain unified proofs for all the Witt and Witt-Grothendieck rings mentioned.

Detailed proofs will appear elsewhere.

2. Homomorphic images of group rings. Let G be an abelian torsion group. The characters χ of G correspond bijectively with the homomorphisms ψ_{χ} of $\mathbf{Z}[G]$ into some ring A of algebraic integers generated by roots of unity. (If G has exponent 2, then $A = \mathbf{Z}$.) The minimal prime ideals of $\mathbf{Z}[G]$ are the kernels of the homomorphisms $\psi_{\chi}: \mathbf{Z}[G] \to A$. The other prime ideals are the inverse images under the ψ_{χ} of the maximal ideals of A and are maximal.

AMS 1970 subject classifications. Primary 15A63, 16A26, 13A15; Secondary 13D15, 13F05, 20C15.

Key words and phrases. Witt ring, quadratic forms, hermitian forms, torsion of Witt rings, orderings of a field, group rings of abelian torsion groups.

¹ Partially supported by N.S.F. Grant GP-9395.

² Partially supported by an N.S.F. traineeship.

THEOREM 1. If M is a maximal ideal of Z[G] the following are equivalent:

- (1) M contains a unique minimal prime ideal.
- (2) The rational prime p such that $M \cap \mathbf{Z} = \mathbf{Z}p$ does not occur as the order of any element of G.

In the sequel K is a proper ideal of Z[G] and R denotes Z[G]/K.

PROPOSITION 2. The nil radical, Nil R, is contained in the torsion subgroup, R^t . We have $R^t = \text{Nil } R$ if and only if no maximal ideal of Ris a minimal prime ideal and $R^t = R$ if and only if all maximal ideals of R are minimal prime ideals.

THEOREM 3. If p is a rational prime which does not occur as the order of any element of G, the following are equivalent:

- (1) R has nonzero p-torsion.
- (2) R has nonnilpotent p-torsion.
- (3) R contains a minimal prime ideal \overline{M} such that R/\overline{M} is a field of characteristic p.
 - (4) There exists a character χ of G with $0 \neq \psi_{\chi}(K) \cap Z \subset Zp$.

In addition, suppose now that G is an abelian q-group for some rational prime q. Then $\mathbf{Z}[G]$ contains a unique prime ideal M_0 which contains q.

COROLLARY 4. The following are equivalent:

- (1) R^t is q-primary.
- (2) Let M be a maximal ideal of R which does not contain q, then M is not a minimal prime ideal.
 - (3) For all characters χ of $G, \psi_{\chi}(K) \cap \mathbf{Z} = 0$ or $\mathbf{Z}q^{n(\chi)}$.
 - (4) $K \subset M_0$ and all the zero divisors of R lie in $\overline{M}_0 = M_0/K$.

THEOREM 5. $R^t \subset \text{Nil } R \text{ if and only if } K \cap \mathbf{Z} = 0 \text{ and one (hence all) of }$ (1), (2), (3), (4) of Corollary 4 hold.

THEOREM 6. If K satisfies the conditions of Theorem 5,

- (1) $R^t = \operatorname{Nil} R$,
- (2) $R^t \neq 0$ if and only if \overline{M}_0 consists entirely of zero divisors,
- (3) R is connected.

THEOREM 7. The following are equivalent:

- (1) For all characters χ we have $\psi_{\chi}(K) \cap Z = Zq^{n(\chi)}$.
- (2) $R = R^t$ is a q-torsion group.
- $(3) K \cap \mathbf{Z} = \mathbf{Z}q^n.$
- (4) $M_0 \supset K$ and \overline{M}_0 is the unique prime ideal of R.

These results apply to the rings mentioned in §1 with q=2. In particular, Theorems 5 and 6 yield the results of [5, §3] for Witt rings of formally real fields and Theorem 7 those of [5, §5] for Witt rings of nonreal fields.

By studying subrings of the rings described in Theorems 5–7 and using the results of [2] for symmetric bilinear forms over a Dedekind ring C and similar results for hermitian forms over C with respect to some involution J of C, we obtain analogous structure theorems for the rings W(C), WG(C), W(C, J) and WG(C, J). In particular, all these rings have only two-torsion, $R^t = \text{Nil } R$ in which case no maximal ideal is a minimal prime ideal or $R^t = R$ in which case R contains a unique prime ideal. The forms of even dimension are the unique prime ideal containing two which contains all zero divisors of R. Finally, any maximal ideal of R which contains an odd rational prime contains a unique minimal prime ideal of R.

3. Topological considerations and orderings on fields. Throughout this section G will be a group of exponent 2 and $R = \mathbb{Z}[G]/K$ with K satisfying the equivalent conditions of Theorem 5. The images in R of elements g in G will be written \bar{g} . For a field F let $\dot{F} = F - \{0\}$. Then $W(F) = \mathbb{Z}[\dot{F}/\dot{F}^2]/K$ with K satisfying the conditions of Corollary 4. In this case K satisfies the conditions of Theorem 5 if and only if F is a formally real field.

THEOREM 8. Let X be the set of minimal prime ideals of R. Then

- (a) in the Zariski topology X is compact, Hausdorff, totally disconnected.
- (b) X is homeomorphic to $\operatorname{Spec}(Q \otimes_Z R)$ and $Q \otimes_Z R \cong C(X, Q)$ the ring of Q-valued continuous functions on X where Q has the discrete topology.
- (c) For each P in X we have $R/P \cong \mathbb{Z}$ and $R_{red} = R/\mathrm{Nil}(R) \subset C(X, \mathbb{Z})$ $\subset C(X, \mathbb{Q})$ with $C(X, \mathbb{Z})/R_{red}$ being a 2-primary torsion group and $C(X, \mathbb{Z})$ being the integral closure of R_{red} in $\mathbb{Q} \otimes_{\mathbb{Z}} R$.
- (d) By a theorem of Nöbeling [4], R_{red} is a free abelian group and hence we have a split exact sequence

$$0 \to \text{Nil}(R) \to R \to R_{red} \to 0$$

of abelian groups.

Harrison (unpublished) and Lorenz-Leicht [3] have shown that the set of orderings on a field F is in bijective correspondence with X

when R = W(F). Thus the set of orderings on a field can be topologized to yield a compact totally disconnected Hausdorff space.

Let F be an ordered field with ordering <, $F_{<}$ a real closure of F with regard to <, and $\sigma_{<}$ the natural map $W(F) \rightarrow W(F_{<})$. Since $W(F_{<}) \cong \mathbb{Z}$ (Sylvester's law of inertia), Ker $\sigma_{<} = P_{<}$ is a prime ideal of W(F). Let the character $\chi_{<} \in \operatorname{Hom}(\dot{F}/\dot{F}^2, \pm 1)$ be defined by

$$\chi_{<}(aF^2) = 1 \text{ if } a > 0,$$

$$= -1 \text{ if } a < 0.$$

PROPOSITION 9. For u in R the following statements are equivalent:

- (a) u is a unit in R.
- (b) $u \equiv \pm 1 \mod P$ for all P in X.
- (c) $u = \pm \bar{g} + s$ with g in G and s nilpotent.

COROLLARY 10 (PFISTER [5]). Let F be a formally real field and R = W(F). Then u is a unit in R if and only if $\sigma_{\leq}(u) = \pm 1$ for all orderings \leq on F.

Let E denote the family of all open-and-closed subsets of X. DEFINITION. Harrison's subbasis H of E is the system of sets

$$W(a) = \{ P \subseteq X \mid a \equiv -1 \pmod{P} \}$$

where *a* runs over the elements $\pm \bar{g}$ of *R*.

If F is a formally real field and R = W(F) then identifying X with the set of orderings on F one sees that the elements of H are exactly the sets

$$W(a) = \{ < \text{on } F \mid a < 0 \}, \quad a \in \dot{F}.$$

Proposition 11. Regarding R_{red} as a subring of $C(X, \mathbf{Z})$ we have

$$R_{red} = Z \cdot 1 + \sum_{U \in H} Z \cdot 2f_U$$

where f_U is the characteristic function of $U \subset X$.

Following Bel'skiĭ [1] we call $R = \mathbb{Z}[G]/K$ a small Witt ring if there exists g in G with 1+g in K. Note that for F a field, W(F) is of this type.

THEOREM 12. For a small Witt ring R the following statements are equivalent:

- (a) E = H.
- (b) (Approximation.) Given any two disjoint closed subsets Y_1 , Y_2 of X there exists g in G such that $\bar{g} \equiv -1 \pmod{P}$ for all P in Y_1 and $\bar{g} \equiv 1 \pmod{P}$ for all P in Y_2 .

(c) $R_{red} = \mathbf{Z} \cdot 1 + C(X, 2\mathbf{Z})$.

COROLLARY 13. For a formally real field F the following statements are equivalent:

- (a) If U is an open-and-closed subset of orderings on F then there exists a in \dot{F} such that < is in U if and only if a<0.
- (b) Given two disjoint closed subsets Y_1 , Y_2 of orderings on F there exists a in F such that a < 0 for $< in Y_1$ and a > 0 for $< in Y_2$.
 - (c) $W(F)_{red} = \mathbf{Z} \cdot 1 + C(X, 2\mathbf{Z}).$

PROPOSITION 14. Suppose F is a field with \dot{F}/\dot{F}^2 finite of order 2^n . Then there are at most 2^{n-1} orderings of F.

If F is a field having orderings $<_1, \cdots, <_n$ we denote by σ the natural map $W(F) \rightarrow W(F_{<_1}) \times \cdots \times W(F_{<_n}) = \mathbb{Z} \times \cdots \times \mathbb{Z}$ via $r \rightarrow (\sigma_{<_1}(r), \cdots, \sigma_{<_n}(r))$.

THEOREM 15. Let $<_1, \cdots, <_n$ be orderings on a field F. Then the following statements are equivalent:

- (a) For each i there exists a in \dot{F} such that $a <_i 0$ and $0 <_j a$ for $j \neq i$.
- (b) χ_{\leq_1} , \cdots , χ_{\leq_n} are linearly independent elements of $\operatorname{Hom}(\dot{F}/\dot{F}^2, \pm 1)$.
 - (c) Im $\sigma = \{(b_1, \dots, b_n) | b_i \equiv b_i \pmod{2} \text{ for all } i, j\}.$

If F is the field $\mathbf{R}((x))((y))$ of iterated formal power series in 2 variables over the real field, F has four orderings, $W(F) = W(F)_{red}$ is the group algebra of the Klein four group, and the conditions of Theorem 15 fail.

COROLLARY 16. Suppose F is a field with \dot{F}/\dot{F}^2 finite of order 2^n . If condition (a) of Theorem 15 holds for the orderings on F then there are at most n orderings on F.

REFERENCES

- 1. A. A. Bel'skiĭ, Cohomological Witt rings, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1147–1161 = Math. USSR Izv. 2 (1968), 1101–1115. MR 39 #5666.
- 2. M. Knebusch, Grothendieck-und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969, 93-157.
- 3. F. Lorenz und J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math. 10 (1970), 82-88.
- 4. G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968), 41-55. MR 38 #233.
- 5. A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132. MR 34 #169.
- 6. W. Scharlau, Quadratische Formen und Galois-Cohomologie, Invent. Math. 4 (1967), 238-264. MR 37 #1442.

- 7. ——, Zur Pfisterschen Theorie der quadratischen Formen, Invent. Math. 6 (1969), 327-328. MR 39 #2793.
 - 8. ——, Induction theorems and the Witt group, Invent. Math. 11 (1970), 37-44.
- 9. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44.

Mathematisches Institut, Universität des Saarlandes, Saarbrücken, Germany

CORNELL UNIVERSITY, ITHACA, NEW YORK 14850

Northwestern University, Evanston, Illinois 60202