EXISTENCE AND UNIQUENESS FOR NONLINEAR NEUTRAL-DIFFERENTIAL EQUATIONS ${ }^{1}$

BY L. J. GRIMM
Communicated by Wolfgang Wasow, August 14, 1970

Abstract. Fixed point theorems are used to prove existence and uniqueness of the $\mathrm{C}^{\mathbf{1}}$ solution of the initial-value problem for a functional-differential equation of neutral type.

1. Introduction. In this paper we consider the initial-value problem (IVP) for the functional-differential equation of neutral type

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x(t), x(g(t, x(t))), x^{\prime}(h(t, x(t)))\right), \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(0)=x_{0} \tag{2a}
\end{equation*}
$$

Here $f(t, x, y, z), g(t, x)$ and $h(t, x)$ are continuous functions with $g\left(0, x_{0}\right)=h\left(0, x_{0}\right)=0$. We assume further that the algebraic equation $z=f\left(0, x_{0}, x_{0}, z\right)$ has a real root z_{0}, and we require that

$$
\begin{equation*}
x^{\prime}(0)=z_{0} . \tag{2b}
\end{equation*}
$$

Existence theorems for IVP's for equation (1) have been proved by R. D. Driver [1] for the case where $h(t, x)<t$, and recently by V. P. Skripnik [2] under the hypotheses that f is sufficiently small, $h(t, x)$ is independent of x, and f is linear in the argument $x^{\prime}(h(t))$. Our existence theorem requires none of these hypotheses. Under some additional conditions we obtain a local uniqueness theorem, and obtain as a corollary a result on existence of continuous solutions of certain nonlinear functional equations.
2. Existence. Let $\alpha>0$ and let $J=[-\alpha, \alpha]$. We shall make the following assumptions concerning the IVP (1)-(2a)-(2b):
(i) $f(t, x, y, z)$ is continuous in some region in R^{4} containing

$$
P=\left\{(t, x, y, z):|t| \leqq \alpha,\left|x-x_{0}\right| \leqq \beta,\left|y-x_{0}\right| \leqq \beta,|z| \leqq M\right\}
$$

where α, β and $M>\left|z_{0}\right|$ are positive constants. We assume that $\alpha \leqq \beta / M$ and that $\sup _{(t, x, y, z) \in P}|f(t, x, y, z)| \leqq M$.

AMS 1970 subject classifications. Primary 34K05; Secondary 34K05.
Key words and phrases. Neutral-differential equations, functional differential equations.
${ }^{1}$ Research supported by NSF Grant GP 20194.
(ii) $g(t, x)$ and $h(t, x)$ are continuous in the projection \tilde{R} of P into the (t, x) space; g and h both map \widetilde{R} into J, with $g\left(0, x_{0}\right)=h\left(0, x_{0}\right)=0$, and $h(t, x)$ satisfies the Lipschitz condition

$$
\left|h\left(t_{1}, x_{1}\right)-h\left(t_{2}, x_{2}\right)\right| \leqq k_{1}\left|t_{1}-t_{2}\right|+k_{2}\left|x_{1}-x_{2}\right|
$$

for all $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right) \in R$, where k_{1} and k_{2} are nonnegative constants with $k_{1}+k_{2} M \leqq 1$.
(iii) The function $f(t, x, y, z)$ satisfies the Lipschitz condition

$$
\left|f\left(t, x, y, z_{1}\right)-f\left(t, x, y, z_{2}\right)\right| \leqq L_{z}\left|z_{1}-z_{2}\right|
$$

for all $\left(t, x, y, z_{1}\right),\left(t, x, y, z_{2}\right) \in P$, where $L_{z}<1$.
The Schauder fixed-point theorem yields
Theorem 1. Under the hypotheses (i)-(iii), the IVP (1)-(2a)-(2b) has at least one solution which is continuously differentiable on J.
3. Uniqueness. In case $h(t, x)$ is independent of x, we obtain the following theorem:

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that:
(iv) $h(t, x)$ is independent of x;
(v) fand g satisfy the Lipschitz conditions:

$$
\begin{aligned}
\mid f\left(t, x_{1}, y_{1}, z_{1}\right)- & f\left(t, x_{2}, y_{2}, z_{2}\right) \mid \\
& \leqq L\left\{\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right\}+L_{z}\left|z_{1}-z_{2}\right|
\end{aligned}
$$

where L and L_{z} are nonnegative constants, with $L_{z}<1$;

$$
\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leqq L_{g}\left|x_{1}-x_{2}\right|
$$

with L_{g} a nonnegative constant, uniformly in their respective domains.
Then there exists $\gamma_{0}, 0<\gamma_{0} \leqq \alpha$, such that there is a unique continuously differentiable solution of the IVP (1)-(2a)-(2b) on the interval [$-\gamma_{0}, \gamma_{0}$].

The proof follows from the contraction mapping principle.
4. Nonlinear functional equations. As a corollary to our existence and uniqueness results, we note that if $f(t, x, y, z)$ is independent of x and y, and $h(t, x)$ is independent of x, the problem (1)-(2b) has the form of the functional equation

$$
\begin{gather*}
z(t)=f(t, z(h(t))) \tag{3}\\
z(0)=z_{0} \tag{4}
\end{gather*}
$$

where z_{0} is a root of $\boldsymbol{z}=f(0, z)$. Theorems 1 and 2 then yield at once:

Theorem 3. Let $f(t, z)$ be continuous in some region in R^{2} containing $P_{1}=\{t:|t| \leqq \alpha,|z| \leqq M\}$, where α and M are positive constants such that $\sup _{(t, z) \in P_{1}}|f(t, z)|<M$, and $M>\left|z_{0}\right|$ where z_{0} is a real root of $z=f(0, z)$. Let f satisfy the Lipschitz condition $\left|f\left(t, z_{1}\right)-f\left(t, z_{2}\right)\right|$ $\leqq L_{z}\left|z_{1}-z_{2}\right|$ for all $\left(t, z_{1}\right),\left(t, z_{2}\right) \in P_{1}$, with $L_{z}<1$. Let $h(t)$ be continuous for $|t| \leqq \alpha, h(0)=0$, and $\left|h\left(t_{1}\right)-h\left(t_{2}\right)\right| \leqq\left|t_{1}-t_{2}\right|$ for $t_{1}, t_{2} \in[-\alpha, \alpha]$.

Then the problem (3)-(4) has at least one continuous solution on $[-\alpha, \alpha]$, and this is the unique continuous solution on this interval if α is sufficiently small.

References

1. R. D. Driver, A functional-differential system of neutral type arising in a twobody problem of classical electrodynamics, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, New York, Academic Press, 1963, pp. 474-484. MR 26 \#4008.
2. V. P. Skripnik, On some systems with deviating argument of neutral type, Izv. Vysš. Učebn. Zaved. Matematika 1968, no. 8 (75), 80-87. (Russian)

University of Missouri-Rolla, Rolla, Missouri 65401

