A RENEWAL THEOREM FOR DISTRIBUTIONS ON R^{1} WITHOUT EXPECTATION ${ }^{1}$

BY K. BRUCE ERICKSON

Communicated by M. Gerstenhaber, December 11, 1970
Abstract. Let $U\{I\}$ be the expected number of visits to an interval I of a random walk associated with a distribution on R^{1} in the domain of attraction of a stable law with exponent $\frac{1}{2}<\alpha \leqq 1$. Theorem A gives asymptotic expressions for $U\{I \pm t\}$ as $t \rightarrow \infty$. Such expressions are not valid when $0<\alpha \leqq \frac{1}{2}$ without additional hypotheses on F. These are indicated in Theorem B.

1. Theorem 1 of [3] extends to distributions on all of R^{1} as follows: (Notation as in [3] or [4, Chapter XI].) Let F be a probability distribution on $(-\infty, \infty)$ and for any measurable set I put

$$
U\{I\}=\sum_{n=0}^{\infty} F^{n *}\{I\}
$$

finite or not. As in [3] we assume F is nonarithmetic. (See note (iv) in §2 below.)

Theorem A. Suppose

$$
\begin{equation*}
1-F(t)+F(-t)=t^{-\alpha} L(t), \quad t>0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{F(-t)}{1-F(t)}=\frac{q}{p} \tag{2}
\end{equation*}
$$

where $0<\alpha \leqq 1, p+q=1$ and L is slowly varying at ∞. Then when $\frac{1}{2}<\alpha<1$,

$$
\begin{align*}
\lim _{t \rightarrow \infty} t^{1-\alpha} L(t)(U\{I+t\} & +U\{I-t\}) \\
& =\frac{\sin \pi a}{\pi\left(p^{2}+2 p q \cos \pi \alpha+q^{2}\right)}|I| \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{U\{I-t\}}{U\{I+t\}}=\frac{q}{p} \tag{4}
\end{equation*}
$$

AMS 1969 subject classifications. Primary 6070, 6066, 6020.
Key words and phrases. Strong renewal theorem on R^{1}, infinite mean, domain of attraction, stable law, slow and regular variation, renewal measure, nonarithmetic.
${ }^{1}$ Research was supported in part by a grant from the NIH at the University of Wisconsin.
for every bounded interval I of length $|I|$. If $\alpha=1, p \neq q$ and $\int_{-\infty}^{\infty}|x| F\{d x\}=\infty$, then (4) remains valid but (3) becomes

$$
\begin{equation*}
\lim _{t \rightarrow \infty} m(t)(U\{I+t\}+U\{I-t\})=(p-q)^{-2}|I| \tag{5}
\end{equation*}
$$

where

$$
m(t)=\int_{0}^{t}(1-F(x)+F(-x)) d x \sim \int_{-t}^{t}|x| F\{d x\}, \quad t \rightarrow \infty
$$

We postpone to $\S 3$ the case $0<\alpha \leqq \frac{1}{2}$.
2. Discussion. (i) Conditions (1) and (2) together are, of course, the necessary and sufficient conditions for F to be in the domain of attraction of a stable law with exponent α; see [4, p. 544].
(ii) Note that $p=1, q=0$ in (2) includes the extreme possibility, previously considered in [3], that $F(t)=0$ for all $t<0$.
(iii) The restriction $p \neq q$ in the case $\alpha=1$ as well as $m(\infty)=\infty$ is essential. A random walk induced by an F for which $p=q, \alpha=1$ and $m(\infty)=\infty$ can be persistent (whether or not it is will depend on more detailed properties of L). If persistent $U\{I\}$, the expected number of visits to I, is infinite, so (4) and (5) are vacuous. If $m(\infty)$ $<\infty, F$ has a finite absolute mean and then the classical renewal theorem applies, see [5, p. 368]; a finite mean can occur only when $\alpha \geqq 1$.
(iv) The restriction to nonarithmetic distributions is not essential; when F is arithmetic, Theorem A is true as stated, provided in (3), (4) and (5) one uses half-open intervals with length a multiple of the span of F. J. A. Williamson [8] has proved results similar to ours for discrete distributions in $R^{d}, d \geqq 1$. See also [6]. However, these authors did not consider $\alpha=1$, so Theorem A gives new information in this case.
3. The case $0<\alpha \leqq \frac{1}{2}$. When $0<\alpha \leqq \frac{1}{2}$ in (1), Theorem A is not true without further restrictions on F. See [8, §5] for counterexamples with discrete F. The following theorem gives an indication of the sort of restrictions needed.

Theorem B. Suppose F satisfies (1) and (2) and is absolutely continuous with bounded density $f(t)=F^{\prime}(t)$. Suppose further that either
(i) $f(t)=O\left(L(|t|) /|t|^{\alpha+1}\right)$ for all t; or
(ii) $f(t)$ ultimately decreases as $|t|$ increases; or
(iii) $f(t)$ is absolutely continuous on $|t| \geqq b$ with $f^{\prime}(t)=O\left(L(|t|) /|t|^{\alpha+2}\right)$.

Then the conclusion of Theorem A follows under (i) for $\frac{1}{4}<\alpha \leqq 1$, and for all $0<\alpha \leqq 1$ under (ii) or (iii).

Discrete versions of (i) and (ii) are known. See [8, §3] and [6, p. 232]; see also [2] where an even stronger monotonicity condition is imposed.

The proof of Theorem B is messy. It together with applications of A and B to convolution type integrals and extensions to higher dimensions will appear elsewhere.
4. Proof of Theorem A. The methods of [3, §§3-6] can be straightforwardly adapted to construct a proof of Theorem A. Here is a sketch. Put $\phi(\theta)=\int_{-\infty}^{\infty} e^{i x \theta} F\{d x\}$ and for any t write $L(t)=L(|t|)$, $m(t)=m(|t|)$. Note that, when $\alpha=1, m$ is slowly varying and $L(t)$ $=o(m(t)), t \rightarrow \infty$; cf. [4, p. 272].

Lemma 1. For $0<\alpha<1$,

$$
\frac{1}{1-\phi(\theta)} \sim \frac{\cos (\pi \alpha / 2) \pm i(p-q) \sin \pi \alpha / 2}{\Gamma(1-\alpha)\left(p^{2}+2 p q \cos \pi \alpha+q^{2}\right)} \frac{|\theta|^{-\alpha}}{L(1 / \theta)}
$$

as $\theta \rightarrow 0^{ \pm}$. If $\alpha=1$ but $p \neq q$ and $m(\infty)=\infty$, then

$$
\frac{1}{1-\phi(\theta)} \sim \frac{\pi}{2}(p-q)^{-2}\left|\frac{d}{d \theta}\left(\frac{1}{m(1 / \theta)}\right)\right|+i(p-q)^{-1} \frac{1}{\theta m(1 / \theta)}
$$

as $|\theta| \rightarrow 0$. (The real and imaginary parts on the left are to be considered as having the corresponding asymptotic form on the right.)

Remark. Except possibly for the form given here when $\alpha=1$, asymptotic expressions for $1-\phi$ equivalent to those in Lemma 1 are well known and occur often in the literature. With the obvious modifications, the method used in proving Lemma 2 of [3] can be used here as well.

From now on when $\alpha=1$ we assume $p \neq q$ and $m(\infty)=\infty$.
Corollary. Let g be any bounded function continuous at $\theta=0$, and put $w_{t}(\theta)=\operatorname{Re}\left(e^{-i t \theta} /(1-\phi(\theta))\right)$. If $0<\alpha<1$, then

$$
\begin{aligned}
\lim _{t \rightarrow \pm \infty}|t|^{1-\alpha} L(t) \int_{|\theta| \leqq B /|t|} & g(\theta) w_{t}(\theta) d \theta \\
& =\frac{2 g(0)}{K \Gamma(1-\alpha)} \int_{0}^{B} \frac{b \cos y \pm d \sin v}{y^{\alpha}} d y
\end{aligned}
$$

where $b=\cos \pi \alpha / 2, d=(p-q) \sin \pi \alpha / 2$ and $K=p^{2}+2 p q \cos \pi \alpha+q^{2}$. When $\alpha=1$ we have

$$
\lim _{t \rightarrow \pm \infty} m(t) \int_{|\theta| \leq B /|t|} g(\theta) w_{t}(\theta) d \theta=\frac{2 g(0)}{(p-q)^{2}}\left(\frac{\pi}{2} \pm(p-q) \int_{0}^{B} \frac{\sin y}{y} d y\right)
$$

This Corollary follows from Lemma 1 and properties of regularly varying functions. See Lemmas 3 and 4 of [3].

Lemma 2. Let g be any function with compact support which satisfies $|g(\theta+h)-g(\theta)|=O(h)$ uniformly in θ. Write $\rho(t)=|t|^{1-\alpha} L(t)$ when $\alpha<1$ and $\rho(t)=m(t)$ when $\alpha=1$. Then, for $\frac{1}{2}<\alpha \leqq 1$ and $B>1$,

$$
\limsup _{|t| \rightarrow \infty}\left|\rho(t) \int_{|\theta| \geq B /|t|} g(\theta) w_{t}(\theta) d \theta\right|=O\left(\frac{1}{B^{2 \alpha-1}}\right) .
$$

(See [3, (5.11)] or [6, §3.5].)
From Lemma 1 and the recurrence criterion [7, p. 34] it follows that $U\{I\}<\infty$ for bounded I. Define

$$
\mu_{t}\{I\}=\rho(t)(U\{I+t\}+U\{-I+t\}) .
$$

Lemma 3. For every $a>0$ and all λ,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-i \lambda x} \gamma_{a}(x) \mu_{t}\{d x\}=2 \rho(t) \int_{-\infty}^{\infty} g_{a}(\theta+\lambda) w_{t}(\theta) d \theta \tag{6}
\end{equation*}
$$

where $g_{a}(\theta)=(1 / a)(1-|\theta| / a)$ for $|\theta| \leqq a, g_{a}(\theta)=0$ elsewhere, and $\gamma_{a}(x)=2(1-\cos a x) / a^{2} x^{2}=\int_{-\infty}^{\infty} e^{i x \theta} g_{a}(\theta) d \theta$.

Note. Lemma 3 may be proved as in [3, §4]. See also [1, p. 221] and [5]. The proof is quite easy when $\alpha<1$ since in this case $|1-\phi(\theta)|^{-1}$ is locally integrable about $\theta=0$. Note also that in both Lemmas 2 and 3 one needs to know that $|1-\phi(\theta)|$ vanishes only at $\theta=0$. But this is true if and only if F is nonarithmetic. This is not a critical problem however, and a proof in the arithmetic case may be made using the methods given here. (In fact the proof is slightly less messy when F is arithmetic since a direct formula for the renewal measure weights is available; the auxiliary functions g_{a}, γ_{a} do not appear.) See [3, §2(ii)] or [6] or [8].

Here is the proof of Theorem A. Write the integral on the righthand side of (6) as the sum of the integral over $|\theta| \leqq B /|t|$ plus the integral over $|\theta|>B /|t|$. Let $t \rightarrow+\infty$ (or $-\infty$) and apply the Corollary and Lemma 2. Next, let $B \rightarrow \infty$, evaluate the improper integrals which arise and substitute $(2 \pi)^{-1} \int_{-\infty}^{\infty} \exp (-i \lambda x) \gamma_{a}(x) d x$ for $g_{a}(\lambda)$. Then,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{-\infty}^{\infty} e^{-i \lambda x} \gamma_{a}(x) \mu_{t}\{d x\}=2 p C \int_{-\infty}^{\infty} e^{-i \lambda x} \gamma_{a}(x) d x \tag{7}
\end{equation*}
$$

where C is the constant occurring on the right in (3) or (5). (If $t \rightarrow-\infty$, the p on the right in (7) is replaced by $q=1-p$.) As (7) is true for all $a>0$ and real λ, it follows from [3, Lemma 8], or [1, p. 218] that

$$
\mu_{t}\{I\} \rightarrow 2 p C|I| \text { and } \mu_{-t}\{I\} \rightarrow 2 q C|I|
$$

as $t \rightarrow \infty$ for every interval I. From this and the definition of μ_{t} we get the conclusion of Theorem A whenever I or \bar{I} is symmetric about the origin. The conclusion for arbitrary I follows by putting $I=I_{0}+\delta$ where \bar{I}_{0} is symmetric and observing that $\rho(t \pm \delta) \sim \rho(t)$ as $t \rightarrow \infty$.

References

1. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968. MR 37 \#4841.
2. N. G. de Bruijn and P. Erdös, On a recursion formula and on some Tauberian theorems, J. Res. Nat. Bur. Standards 50 (1953), 161-164. MR 14, 973.
3. K. B. Erickson, Strong renewal theorems with infinite mean, Trans. Amer. Math. Soc. 151 (1970), 263-291.
4. W. Feller, Introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR $39 \# 3535$.
5. W. Feller and S. Orey, A renewal theorem, J. Math. Mech. 10 (1961), 619-624. MR 24 \#A581.
6. A. Garsia and J. Lamperti, A discrete renewal theorem with infinite mean, Comment. Math. Helv. 37 (1962/63), 221-234. MR 26 \#5630.
7. Donald S. Ornstein, Random walk. I, Trans. Amer. Math. Soc. 138 (1969), 1-43.
8. J. A. Williamson, Random walks and Riesz kernels, Pacific J. Math. 25 (1968), 393-415. MR 37 \#2328.

Stanford University, Stanford, California 94305

