BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 3, May 1971

A RENEWAL THEOREM FOR DISTRIBUTIONS ON R^1 WITHOUT EXPECTATION¹

BY K. BRUCE ERICKSON

Communicated by M. Gerstenhaber, December 11, 1970

ABSTRACT. Let $U\{I\}$ be the expected number of visits to an interval I of a random walk associated with a distribution on R^1 in the domain of attraction of a stable law with exponent $\frac{1}{2} < \alpha \leq 1$. Theorem A gives asymptotic expressions for $U\{I\pm t\}$ as $t \to \infty$. Such expressions are not valid when $0 < \alpha \leq \frac{1}{2}$ without additional hypotheses on F. These are indicated in Theorem B.

1. Theorem 1 of [3] extends to distributions on all of R^1 as follows: (Notation as in [3] or [4, Chapter XI].) Let F be a probability distribution on $(-\infty, \infty)$ and for any measurable set I put

$$U\{I\} = \sum_{n=0}^{\infty} F^{n*}\{I\}$$

finite or not. As in [3] we assume F is nonarithmetic. (See note (iv) in §2 below.)

THEOREM A. Suppose

(1)
$$1 - F(t) + F(-t) = t^{-\alpha}L(t), \quad t > 0,$$

and

(2)
$$\lim_{t \to \infty} \frac{F(-t)}{1 - F(t)} = \frac{q}{p}$$

where $0 < \alpha \leq 1$, p+q=1 and L is slowly varying at ∞ . Then when $\frac{1}{2} < \alpha < 1$,

(3)
$$\lim_{t \to \infty} t^{1-\alpha} L(t) (U\{I+t\} + U\{I-t\}) = \frac{\sin \pi \alpha}{\pi (p^2 + 2pq \cos \pi \alpha + q^2)} |I|$$

and

(4)
$$\lim_{t \to \infty} \frac{U\{I-t\}}{U\{I+t\}} = \frac{q}{p}$$

Copyright © 1971, American Mathematical Society

AMS 1969 subject classifications. Primary 6070, 6066, 6020.

Key words and phrases. Strong renewal theorem on R^1 , infinite mean, domain of attraction, stable law, slow and regular variation, renewal measure, nonarithmetic.

¹ Research was supported in part by a grant from the NIH at the University of Wisconsin.

for every bounded interval I of length |I|. If $\alpha = 1$, $p \neq q$ and $\int_{-\infty}^{\infty} |x| F\{dx\} = \infty$, then (4) remains valid but (3) becomes

(5)
$$\lim_{t \to \infty} m(t)(U\{I+t\} + U\{I-t\}) = (p-q)^{-2} |I|$$

where

$$m(t) = \int_0^t (1 - F(x) + F(-x)) \, dx \sim \int_{-t}^t |x| F\{dx\}, \qquad t \to \infty.$$

We postpone to §3 the case $0 < \alpha \leq \frac{1}{2}$.

2. Discussion. (i) Conditions (1) and (2) together are, of course, the necessary and sufficient conditions for F to be in the domain of attraction of a stable law with exponent α ; see [4, p. 544].

(ii) Note that p=1, q=0 in (2) includes the extreme possibility, previously considered in [3], that F(t) = 0 for all t < 0.

(iii) The restriction $p \neq q$ in the case $\alpha = 1$ as well as $m(\infty) = \infty$ is essential. A random walk induced by an F for which p = q, $\alpha = 1$ and $m(\infty) = \infty$ can be persistent (whether or not it is will depend on more detailed properties of L). If persistent $U\{I\}$, the expected number of visits to I, is infinite, so (4) and (5) are vacuous. If $m(\infty)$ $< \infty$, F has a finite absolute mean and then the classical renewal theorem applies, see [5, p. 368]; a finite mean can occur only when $\alpha \ge 1$.

(iv) The restriction to nonarithmetic distributions is not essential; when F is arithmetic, Theorem A is true as stated, provided in (3), (4) and (5) one uses half-open intervals with length a multiple of the span of F. J. A. Williamson [8] has proved results similar to ours for discrete distributions in \mathbb{R}^d , $d \ge 1$. See also [6]. However, these authors did not consider $\alpha = 1$, so Theorem A gives new information in this case.

3. The case $0 < \alpha \leq \frac{1}{2}$. When $0 < \alpha \leq \frac{1}{2}$ in (1), Theorem A is not true without further restrictions on F. See [8, §5] for counterexamples with discrete F. The following theorem gives an indication of the sort of restrictions needed.

THEOREM B. Suppose F satisfies (1) and (2) and is absolutely continuous with bounded density f(t) = F'(t). Suppose further that either

(i) $f(t) = O(L(|t|)/|t|^{\alpha+1})$ for all t; or

(ii) f(t) ultimately decreases as |t| increases; or

(iii) f(t) is absolutely continuous on $|t| \ge b$ with $f'(t) = O(L(|t|)/|t|^{\alpha+2})$. Then the conclusion of Theorem A follows under (i) for $\frac{1}{4} < \alpha \le 1$, and for all $0 < \alpha \le 1$ under (ii) or (iii). Discrete versions of (i) and (ii) are known. See [8, §3] and [6, p. 232]; see also [2] where an even stronger monotonicity condition is imposed.

The proof of Theorem B is messy. It together with applications of A and B to convolution type integrals and extensions to higher dimensions will appear elsewhere.

4. Proof of Theorem A. The methods of [3, §§3-6] can be straightforwardly adapted to construct a proof of Theorem A. Here is a sketch. Put $\phi(\theta) = \int_{-\infty}^{\infty} e^{ix\theta} F\{dx\}$ and for any t write L(t) = L(|t|), m(t) = m(|t|). Note that, when $\alpha = 1$, m is slowly varying and $L(t) = o(m(t)), t \rightarrow \infty$; cf. [4, p. 272].

LEMMA 1. For $0 < \alpha < 1$,

$$\frac{1}{1-\phi(\theta)} \sim \frac{\cos(\pi\alpha/2) \pm i(p-q)\sin\pi\alpha/2}{\Gamma(1-\alpha)(p^2+2pq\cos\pi\alpha+q^2)} \frac{|\theta|^{-\alpha}}{L(1/\theta)}$$

as $\theta \rightarrow 0^{\pm}$. If $\alpha = 1$ but $p \neq q$ and $m(\infty) = \infty$, then

$$\frac{1}{1-\phi(\theta)} \sim \frac{\pi}{2} (p-q)^{-2} \left| \frac{d}{d\theta} \left(\frac{1}{m(1/\theta)} \right) \right| + i(p-q)^{-1} \frac{1}{\theta m(1/\theta)}$$

as $|\theta| \rightarrow 0$. (The real and imaginary parts on the left are to be considered as having the corresponding asymptotic form on the right.)

REMARK. Except possibly for the form given here when $\alpha = 1$, asymptotic expressions for $1 - \phi$ equivalent to those in Lemma 1 are well known and occur often in the literature. With the obvious modifications, the method used in proving Lemma 2 of [3] can be used here as well.

From now on when $\alpha = 1$ we assume $p \neq q$ and $m(\infty) = \infty$.

COROLLARY. Let g be any bounded function continuous at $\theta = 0$, and put $w_t(\theta) = \operatorname{Re}(e^{-it\theta}/(1-\phi(\theta)))$. If $0 < \alpha < 1$, then

$$\lim_{t \to \pm \infty} |t|^{1-\alpha} L(t) \int_{|\theta| \le B/|t|} g(\theta) w_t(\theta) \ d\theta$$
$$= \frac{2g(0)}{K\Gamma(1-\alpha)} \int_0^B \frac{b \cos y \pm d \sin y}{y^{\alpha}} dy$$

where $b = \cos \pi \alpha/2$, $d = (p-q) \sin \pi \alpha/2$ and $K = p^2 + 2pq \cos \pi \alpha + q^2$. When $\alpha = 1$ we have

408

$$\lim_{t\to\pm\infty}m(t)\int_{|\theta|\leq B/|t|}g(\theta)w_t(\theta)\ d\theta=\frac{2g(0)}{(p-q)^2}\left(\frac{\pi}{2}\pm(p-q)\int_0^B\frac{\sin y}{y}\,dy\right).$$

This Corollary follows from Lemma 1 and properties of regularly varying functions. See Lemmas 3 and 4 of [3].

LEMMA 2. Let g be any function with compact support which satisfies $|g(\theta+h)-g(\theta)| = O(h)$ uniformly in θ . Write $\rho(t) = |t|^{1-\alpha}L(t)$ when $\alpha < 1$ and $\rho(t) = m(t)$ when $\alpha = 1$. Then, for $\frac{1}{2} < \alpha \leq 1$ and B > 1,

$$\lim_{|t|\to\infty} \sup_{|\theta|\geq B/|t|} g(\theta) w_t(\theta) \ d\theta = O\left(\frac{1}{B^{2\alpha-1}}\right).$$

(See [3, (5.11)] or [6, §3.5].)

From Lemma 1 and the recurrence criterion [7, p. 34] it follows that $U\{I\} < \infty$ for bounded *I*. Define

$$\mu_t \{I\} = \rho(t) (U\{I+t\} + U\{-I+t\}).$$

LEMMA 3. For every a > 0 and all λ ,

(6)
$$\int_{-\infty}^{\infty} e^{-i\lambda x} \gamma_a(x) \mu_i \{ dx \} = 2\rho(t) \int_{-\infty}^{\infty} g_a(\theta + \lambda) w_i(\theta) \ d\theta$$

where $g_a(\theta) = (1/a)(1 - |\theta|/a)$ for $|\theta| \leq a$, $g_a(\theta) = 0$ elsewhere, and $\gamma_a(x) = 2(1 - \cos ax)/a^2x^2 = \int_{-\infty}^{\infty} e^{ix\theta}g_a(\theta) d\theta$.

NOTE. Lemma 3 may be proved as in [3, §4]. See also [1, p. 221] and [5]. The proof is quite easy when $\alpha < 1$ since in this case $|1-\phi(\theta)|^{-1}$ is locally integrable about $\theta = 0$. Note also that in both Lemmas 2 and 3 one needs to know that $|1-\phi(\theta)|$ vanishes only at $\theta = 0$. But this is true if and only if F is nonarithmetic. This is not a critical problem however, and a proof in the arithmetic case may be made using the methods given here. (In fact the proof is slightly less messy when F is available; the auxiliary functions g_a , γ_a do not appear.) See [3, §2(ii)] or [6] or [8].

Here is the proof of Theorem A. Write the integral on the righthand side of (6) as the sum of the integral over $|\theta| \leq B/|t|$ plus the integral over $|\theta| > B/|t|$. Let $t \to +\infty$ (or $-\infty$) and apply the Corollary and Lemma 2. Next, let $B \to \infty$, evaluate the improper integrals which arise and substitute $(2\pi)^{-1} \int_{-\infty}^{\infty} \exp(-i\lambda x) \gamma_a(x) dx$ for $g_a(\lambda)$. Then,

(7)
$$\lim_{t\to\infty}\int_{-\infty}^{\infty}e^{-i\lambda x}\gamma_a(x)\mu_t\{dx\}=2pC\int_{-\infty}^{\infty}e^{-i\lambda x}\gamma_a(x)\ dx$$

1971]

where C is the constant occurring on the right in (3) or (5). (If $t \rightarrow -\infty$, the p on the right in (7) is replaced by q=1-p.) As (7) is true for all a > 0 and real λ , it follows from [3, Lemma 8], or [1, p. 218] that

$$\mu_t\{I\} \to 2pC \mid I \mid \text{ and } \mu_{-t}\{I\} \to 2qC \mid I \mid$$

as $t \to \infty$ for every interval *I*. From this and the definition of μ_t we get the conclusion of Theorem A whenever *I* or \overline{I} is symmetric about the origin. The conclusion for arbitrary *I* follows by putting $I = I_0 + \delta$ where \overline{I}_0 is symmetric and observing that $\rho(t \pm \delta) \sim \rho(t)$ as $t \to \infty$.

References

1. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968. MR 37 #4841.

2. N. G. de Bruijn and P. Erdös, On a recursion formula and on some Tauberian theorems, J. Res. Nat. Bur. Standards 50 (1953), 161-164. MR 14, 973.

3. K. B. Erickson, Strong renewal theorems with infinite mean, Trans. Amer. Math. Soc. 151 (1970), 263-291.

4. W. Feller, Introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR 39 #3535.

5. W. Feller and S. Orey, A renewal theorem, J. Math. Mech. 10 (1961), 619-624. MR 24 #A581.

6. A. Garsia and J. Lamperti, A discrete renewal theorem with infinite mean, Comment. Math. Helv. 37 (1962/63), 221-234. MR 26 #5630.

Donald S. Ornstein, Random walk. I, Trans. Amer. Math. Soc. 138 (1969), 1-43.
J. A. Williamson, Random walks and Riesz kernels, Pacific J. Math. 25 (1968),

393–415. MR 37 #2328.

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305