ORIENTATION-PRESERVING MAPPINGS, A SEMIGROUP OF GEOMETRIC TRANSFORMATIONS AND A CLASS OF INTEGRAL OPERATORS¹

BY ANTONIO O. FARIAS

Communicated by H. S. M. Coxeter, September 29, 1970

Let A, B be smooth $(=C^{\infty})$, oriented n-manifolds, A with naturally oriented boundary, ∂A , and B without boundary.

A very important problem in geometric analysis is that of giving an algebraic and/or combinatorial characterization of those smooth mappings from ∂A to B which can be extended to a smooth, orientation-preserving mapping from A to B.

In this work, one such characterization is given in the particular case where A is the unit disk, D ($\partial D = S^1$), and B is the plane, R^2 . An application is made to a class of convolution-type operators to show they are topologically equivalent to the Hilbert transform.

1. Preliminaries. A smooth $f: S^1 \to R^2$ is called *extendable* if there is a smooth $F: D^- \to R^2$ (D^- closure of D) with nonnegative Jacobian, J_F , and whose restriction to S^1 is f. If, further, $J_F > 0$ on S^1 then f is properly extendable.

A *Titus transformation* T is a linear operator on the vector space of smooth functions from S^1 to R^2 given by:

(1.1)
$$(Tf)(t) = f(t) + c(t) \det[v, f'(t)]v,$$

c a nonnegative, smooth function on S^1 . The set of all finite compositions of Titus transformations is a semigroup, \mathfrak{I} . The effect of a Titus transformation can be represented by an elementary operation of growth along a fixed direction, growth understood in the sense of moving to the outside of an oriented curve.

A "degenerate" mapping $f: S^1 \rightarrow R^2$ is one whose image lies in a onedimensional subspace. A *Titus mapping* (T-mapping) is the image by an element of 3 of a degenerate mapping. A Titus mapping, thus, has

AMS 1970 subject classifications. Primary 57D40, 47D05, 44A35; Secondary 30A90, 47E05, 44A15.

Key words and phrases. Normal immersions, extendable mappings, holomorphic mappings, Hilbert transform.

¹ This research is contained in the author's doctoral dissertation submitted to the University of Michigan, and was supported by a Scholarship from Conselho Nacional de Pesquisas (Brazil). The author wishes to thank his advisor, Professor Charles Titus, for suggesting the problem and for his assistance throughout the work.

a simple, basic, geometric meaning: it is a mapping which can be obtained as a finite number of growth operations applied to a degenerate curve.

2. Results.

THEOREM 1. A normal mapping (see [4] for definition) is extendable if and only if it is a Titus mapping.

The *if* part is proved by induction and is due to C. J. Titus (oral communication). The *only if* part follows from Theorem 2 below.

THEOREM 2. Every properly extendable mapping is a Titus mapping.

The proof of Theorem 2 is accomplished by reduction to the case of a holomorphic function having only a simple zero of the derivative, in which case a direct construction is performed.

3. Application. Consider integral operators given by:

(2.1)
$$y(t) = -\int_{0}^{2\pi} k(s)x(t-s) ds,$$

where x is smooth and has period 2π , and k is real analytic in $(0, 2\pi)$ with

(2.2)
$$k'(s) = \int_{-\infty}^{\infty} e^{-sr} d\mu(r),$$

 μ a nondecreasing function (see [1], [2]). We allow certain cases where k is not integrable; the integral in (2.1) must, then, be interpreted in the sense of Cauchy's principal value. (See [2] for details.)

Such an operator will be called a *BL-operator*. A mapping $f: S^1 \rightarrow R^2$ is called a *BL-mapping* if it can be expressed as f(t) = x(t) + iy(t) where x, y satisfy (2.1) and (2.2).

It is easy to see that a holomorphic boundary [3] is a *BL*-mapping. We prove that they are generic, in some sense.

THEOREM 3. Every normal BL-mapping is topologically equivalent to a holomorphic boundary.

The proof uses approximation by *T*-mappings and results of Stoïlow-Whyburn-Carathéodory [3] about extendable mappings. Full details will be published elsewhere.

REFERENCES

1. D. C. Benson, Extensions of a theorem of Loewner on integral operators, Pacific J. Math. 9 (1959), 365-377. MR 21 #7406.

- 2. C. Loewner, A topological characterization of a class of integral operators, Ann. of Math. (2) 49 (1948), 316-332. MR 9, 502.
- 3. C. J. Titus, The combinatorial topology of analytic functions on the boundary of the disk, Acta Math. 106 (1961), 45-64.
- 4. H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276-284.

Eastern Michigan University, Ypsilanti, Michigan 48197