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A real (complex) L*-algebra is a Lie algebra L whose underlying 
vector space is a real (complex) Hubert space and such that, for each 
XELL, there exists an tf*EL satisfying {[x, y], z) = (y, [#*, z]) for all 
y% z in L. J. R. Schue [ l l ] , [12] defined and classified the simple 
separable complex L*-algebras. V. K. Balachandran [l], [2], [3], 
[4], [5] gave a more general setting to the techniques used by Schue 
for not necessarily separable L*-algebras; he also defined the notions 
of real form and compact real form. 

The main result of this work is the classification of the simple 
separable real L*-algebras up to L*-isomorphisms. The classification 
was also obtained, independently, by Mr. Pierre de la Harpe. 

The following can be shown : 

THEOREM 1. The complexification L of a simple L*-algebra L is not 
simple if and only if L = MR> where M is a simple complex L*-algebra 
(MR denotes the real L*'-algebra obtained from M by restriction of scalar s). 

Therefore, the classification reduces essentially, aside from simple 
L*-algebras having a complex structure which are in a one-to-one 
correspondence with the simple complex L*-algebras, to the study of 
the real forms of all simple complex L*-algebras. 

If L is a real form of a semisimple L*-algebra Z, the decomposition 
L — K+M (Hubert direct sum), where K= {a£L:a* = — a} and 
M= { a £ L : a * = a } , defines ail involutive L*-automorphism 5 of L 
(S\K = id and S| M= - i d ) which can be extended to L by linearity. S 
is called the involution of L associated to L. Conversely, if S is an 
involutive L*-automorphism of Z, then S leaves the unique compact 
form U (set of all skew-adjoint elements of L) invariant and we have 
U—K+iM, the decomposition of U into eigenspaces of 5. The real 
form L = K+M is said to be associated to 5. 

There is a one-to-one correspondence between conjugacy classes of 
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real forms and conjugacy classes of L*-automorphisms of L contain
ing an involutive element. 

Following an idea of S. Murakami [9], [lO], the following can be 
proved: 

THEOREM 2. Let Lbe a semisimple complex L*-algebra and S be an 
involutive L*-automorphism of L. Then, there exist a Cartan subalgebra 
B and a regular self adjoint element h in it such that: SH—B, Sh — h 
and the 1-eigenspace of S in B is a maximal abelian L*-subalgebra of K 
(the complexification of K). 

Having such a Cartan subalgebra it is possible to determine ex
plicitly the structure of K in terms of the roots of L relative to 8. 

THEOREM 3. Let L be a simple complex L*-algebra, B be a Cartan 
subalgebra, and A be the root system of L relative to B. Then, if an in
volutive rotation leaves a regular self adjoint element fixed, it is a li par
ticular rotation" (i.e. it leaves a system of simple roots invariant). 

It is known, [4], that in the case of simple L*-algebras of types A 
and C all Cartan subalgebras are conjugate, and in case B the Cartan 
subalgebras fall into two conjugacy classes. Thus, if we fix in cases A 
and C a Cartan subalgebra B and a system of simple roots ir, there 
exists in each conjugacy class of L*-automorphisms containing an 
involutive element, an involution leaving B and x invariant. In case 
B we have to take two nonconjugate Cartan subalgebras in order to 
get a similar result. 

The classification follows easily by reducing such an involution to a 
normal form. 

The result we obtain is exactly what we expect as an infinite-dimen
sional analogue of classical simple Lie algebras. 

Summary of the results. Let E be a separable Hubert space, and 
$ = {ei\ be an o.n.b., which we are going to reorder in different ways 
according to the case under consideration. gï(<x>, C)2, the set of all 
Hilbert-Schmidt operators of E, is a simple complex L*-algebra of 
type A. o(<», C)2 = {aEôK00» C^'Ja — —a} is a simple complex L*-
algebra of type B. Let <£ = {e_i, e_2, • • • , e%, e%, • • • } and / = [-/o], 
i.e. / is the bounded operator of E defined by /£_.»= —et and Jd — e-.*; 
then $p(co, C)2= {^EôK00» 0)%:'aJ+Ja = Q} is a simple complex 
L*-algebra of type C. We note that in this case we can turn E into a 
right vector space over K (K= {I, i,j, ij} R the algebra of quaternions) 
by defining the action of j by xj = J$ for all # £ £ ; an o.n.b. of E over 
Kis { e\, e%, • • • }. An element aGflI( °°, C)2 is K-linear if and only if 



464 IGNACIO UNSAIN [May 

Jâ — aJ, i.e. if a is of the form [-SJïL and when this is so, we shall use 
the matrix expression of a given by a i+a?j , in other words, as a linear 
operator of E over K. We denote by gI(oo, K)2 the set of all K-linear 
operators in ôK00» C)2. 

The simple separable real L*-algebras having a complex structure are 
the real L*-algebras obtained from QI( OO, C)2, o( oo, C)2 and $p( oo, C)2 

by restriction of scalars. 
The compact simple separable real L*-algebras are 

u(oo, C)2 = {aGgï(oo, C)2:a* = - a}, 

0(00, JR)2 = {a G 0(00, C)2:a* = — a } , 

u(«>, K) 2 - {a £ öI(oo, K) 2 : *â + a = o } , 

where £ = tf0—#ii—#^'~#3^7 if # = Xo+Xii+X2J+Xsij in ÜC. 
In the following, L will denote a simple complex L*-algebra, S an 

involutive L*-automorphism of Z, and L the real form of L associated 
to S or a real form of L conjugate to L. 

The noncompact simple separable real L*-algebras are 

(a) 

ÂI 

Ani(«) 

BDI(w) 

(b) 

Ain(oo) 

BDI(oo) 

(c) 

An 

* = {«1 , e 2 , • • • , en, • • • J , Kn = , 

£ = ôt(°°>C)2, 5 a = - ' a , 

£ = 8Ï(°°) R)z = all real matrices in ôl( 00, C)2. 

Z = fll( « , C) 2, 5a = i^atf»"1, 

L = u(n, oo)2 = {a G öK00, C)2:'5ir„ + Kna = 0} . 

Z = o ( » , C ) 2 , Sa = KnaKnl, 

L = o(n, oo)2= {a £ ö K 0 0 . ^ ' ^ » + #»<* = O}. 

$ = {e_!, e_2, • • • , eu e2, • • • }, K„ = , 

•£ = flK00» O 2» -SO = K^aK^, 

L = u(oo, oo)2. 

L = 0(00, C)2, 5a = ^„aüToT1, 

X = 0(00, oo)2. 

$ = {e_i, «_t, • • • , «1, e», • • • }, J = I , 

I = g l (« , C)2, 5a = - /«a/-1 , 

£ = 8l(oo,.K)2. 
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CI 
L - SK°°> C)2, Sa = â, 

L = 3p(co, R)z — all real matrices in $£(<», C)2. 

( ) r^* ° i 
(d) $ = {e^i, 0_2, • • • , eh e2, • • • J, 2TW,« = , 

CH(») 
I = Sp(°o, C)2, 5a = Kn,naK~X, 

here Kn is the operator of E over HC defined by Knei~ —e* (1 ^ i ^ w ) 
and Knei — ei (i>n). 

$ = {e_ i , 0_3, • • • , 0-2, 0-4, • • • , 0i, 03, • • • , 02, 04, • • • } , 

(e) _ nr. o -i 
M 'w~Lo KJ' 

L = o(oo, C)2, Sa = JaJ~l, 
Dil i , % 

L « 0(00, X) 2 = {a G flI(oo, K)2:<a + a = 0}, 

here cc^Xo+Xii—Xzj+xtij if x — Xo+Xii+xtf+Xzij in K. 

I = Sp(oo, C)2, 5a = ifco.«o^!«o, 
CII(oo) 

L = u(oo, oo, K)2 (see CII(n)). 

As a result of the above considerations, we obtain the following: 

THEOREM 4. Two real forms L and L' of a simple complex L*-algebra 
are L*-isomorphic if and only if the corresponding characteristic sub-
algebras are L*-isomorphic. 
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