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Let Ax be a simple component of the group algebra QG of a finite 
group G over the rationals Q having center K. Let p be a rational 
prime and Qp the £-adic completion of Q. Then Qp ®QAX is a direct 
sum of simple algebras Kp ®K Ax where p is a prime divisor of p. The 
characters associated with these simple components are all conjugate. 
Since if a representation with i£-valued character x can be written in 
KPl then a representation with character xff m&y be written in 
jRTpcr, we see that either Ax is split at every prime dividing p or at 
none. This fact has also been observed independently by Mark 
Benard. 

We are now in a position to apply results of Mac Lane [3, Corol
lary] together with those of [l ] : 

THEOREM 1. If A x is a quaternion algebra central over K, then Ax 

~K ®LB where L is any subfield of K such that the galois group of 
K/L is cyclic, and B is a simple algebra central over L. 

Hence if K/Q is cyclic of odd order, the simple algebras central 
over K appearing in some QG are precisely those of the form K 
®QB where B is a quaternion algebra over Q (cf. [2]). 

As a final remark, we observe that the above together with the con
struction of [ l ] enable us to determine those algebras of index 3 in 
Sch ( 0 \ / ( - 3 ) ) , the Schur subgroup of Q(V(~3))- By [2], they are 
not of the form Q(V(~"3)) ®Q A. Hence by Mac Lane [3], the above 
remarks and the following construction, they must have zero Hasse 
invariant a t any primes which are ramified or inertial; i.e. if p 
s= — 1 mod (3) or p = 3 then there is zero Hasse invariant at primes of 
Q(V( —3)) extending these. If £ = 1 (3), then p splits into 2 primes in 
Ç(v /(~"3)), and we show that there is an Ax with Hasse invariant | a t 
one of these primes, f at the other, and zero elsewhere: Simply let G 
be the group generated by a, 6, c where ap = l, èp""1 = c, cz = l and 
where c is central and b acts on a as the generator of the galois group 
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Q(%P)/Q acts on %p. Then QG contains the simple component 
(K (£p), r, £3) where K = Q( V ( — 3)). Summarizing, 

THEOREM 2. Z7*a simple algebras of index 3 central over (?(\/( —3)) 
which appear in some QG are precisely those which do not split and have 
different Hasse invariants at both extensions of a finite number of p 
ss 1 (3), and split everywhere else. 

THEOREM 3. The simple algebras of exponent 4 central over Q(i) 
which appear (up to similarity) in some QG are precisely those of the 
form A®QB where A is a quaternion algebra central over Q, and B is 
an algebra central over Q(i) which has Hasse invariants 1/4 and 3/4 
at the extensions of a finite number of p^l (4) and splits everywhere 
else. 

ADDED IN PROOF. We construct an algebra in S(Q\/10) which is 
not of the form Q \ A 0 ®QD for any quaternion algebra D central 
over the rationals. This shows that the real quadratic and quadratic 
imaginary cases are substantially different. Let G be the group 
generated by x, y, a, b where 

*i = 1, as = 1 $ yi « a2f b2 = l f 

b~~lab = a""1, yrxay = a5, yrxby = a6&, ylxy = x2, 

xa = axy xb = bx. 

I t is clear that QG contains the simple component A = (Q(^t £8), 
Z4X-Z2, c) whose center is QV10, and where the values of c are cer
tain 8th roots of 1. Furthermore, the completion of A a t the prime 
f dividing 5 contains the cyclic algebra B = (05(£5), Z4, i) which is of 
exponent 4. Hence Ax == B ®Q5 C where C, the centralizer of B in 
Ac, is a split 4 dimensional algebra central over 06\/ lO. In particular 
A does not split a t f, and so is not of the form Q\/10 ® Q D for any 
D of exponent 2. 
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