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ABSTRACT. A survey is made of our state of knowledge concern­
ing the effective determination of all imaginary quadratic fields 
with prescribed class numbers. Recent advances are discussed re­
lating to linear forms in the logarithms of algebraic numbers funda­
mental to the theory, and applications are mentioned to other 
arithmetical questions. 

It is my privilege once again to address a meeting of the American 
Mathematical Society, and I am particularly pleased that the present 
session has been held here in this historic capital. I t may perhaps be 
regarded as an especially appropriate locality, for it was in this city 
just over half a century ago that Dickson's celebrated History of the 
theory of numbers was published, and these scholarly tomes have 
undoubtedly inspired much progress in the topic that forms the theme 
of my talk. The branch of research about which I shall speak is in 
fact one of the oldest in the realms of mathematics, originating indeed 
from the famous Disquisitiones Arithmeticae of Gauss* It was here 
that Gauss laid the foundations of the theory of binary quadratic 
forms which, with certain modifications in terminology, has become 
our modern theory of quadratic fields. Gauss showed how one could 
divide the set of all binary quadratic forms with a given discriminant 
into classes such that two forms belong to the same class if and only if 
there exists an integral unimodular substitution relating them, and 
he showed also how one could combine the classes into genera so that 
two forms are in the same genus if and only if they are rationally 
equivalent. He also raised a number of notorious problems; in par­
ticular, in Article 303, he conjectured that there are only finitely 
many negative discriminants associated with any given class number 
and moreover that the tables of discriminants which he had drawn up 
in the cases of relatively small class numbers were in fact complete. 
He added, however: " Demons trationes autem rigorosae harum 
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observationum perdifficiles esse videntur." And apparently Gauss was 
right, for it was not until 1934 that Heilbronn [14] developing earlier 
work of Hecke, Mordell and Deuring, succeeded in verifying the 
first part of the conjecture, and it was only four years ago that Stark 
[18] and I [3] independently obtained an algorithm for determining 
all the imaginary quadratic fields with class number 1, which amounts 
to a confirmation of the simplest case of the second part of the con­
jecture. Heilbronn's work was much extended by Siegel [ló] and 
Brauer [lO] and the general asymptotic formula for the class number 
which they established has been of fundamental significance in the 
evolution of modern number theory; but the arguments are noneffec­
tive and cannot lead to a verification of the completeness of the class 
number tables as sought by Gauss. Stark's work on the class number 
1 problem was motivated by an earlier paper of Heegner [13] which 
related the question to the solution of certain Diophantine equations 
and the study of elliptic modular functions; my arguments, on the 
other hand, involved results from the theory of transcendental num­
bers and an idea of Gel'fond and Linnik [12]. I t was shown a year or 
so ago that the latter method could readily be adapted to give an ef­
fective algorithm for determining all the imaginary quadratic fields 
with class number 2 in the case when the discriminants of the fields 
are even [5] and a similar algorithm was recently obtained by Kenku 
in Oxford and Weinberger in Berkeley using analogues of Stark's 
techniques. Although it was apparent that neither method would ex­
tend easily to deal with the case of odd discriminants, it nevertheless 
became clear2 that if one could obtain a basic improvement in the re­
sults concerning linear forms in the logarithms of algebraic numbers 
[3 ] which formed the key to the transcendental approach to the class 
number 1 problem then a complete resolution of the class number 2 
problem would follow. And some time during this summer Stark 
(working in Göttingen) and I (in Cambridge) obtained independently 
a strengthening of the theorem on logarithms of the desired kind [ó], 
[19]. The solutions we derived, though similar in outline, neverthe­
less differ in some important details. Very recently a combination of 
our methods has led to improvements in connexion with other appli­
cations of linear forms in logarithms [9] and I shall say more about 
these later. To begin with today I should like to indicate how the 
theory of transcendental numbers led to a resolution of the class num­
ber 1 problem, and I should like then to describe the new ideas in­
volved in solving the analogous problem for class number 2. 

2 This was noted, in particular, by Dr. L. Goldstein of the University of Maryland. 
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All solutions to date of the class number 1 problem depend on a 
formula for a product of L-functions analogous to the classical 
Kronecker limit formula. If — d < 0 and k > 0 denote the discriminants 
of the quadratic fields Q(\/ — d) and Q(\/k) respectively and if 
x(w) = (k/n), x'(n) = ( — d/n) denote the usual Kronecker symbols we 
have 

(*,y)^(0,0) 

where ƒ runs through a complete set of inequivalent binary quadratic 
forms with discriminant — d. On writing f=ax2+bxy+cy2 and 
assuming that (&, d) = 1, one can express the sum over x and y as a 
Fourier series 

7T2 x 0 ) 

where 

for r?*0 and 

(a) _ . / 1 \ " 

— n ( i - - ) + E -̂>»/<*«>, 
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-y/d 

Air 

if k is the power of a prime £, 4̂ 0 == 0 otherwise. Further, assuming that 
k>4, we obtain from classical results of Dirichlet 

L(l , x) = 2h(k) log e/Vk, L(l , xxO = h(-kd)T/V(kd), 

where h(k), h( — kd) denote the class numbers of the fields Q(Vk) and 
Q(V( — &0) respectively and e denotes the fundamental unit of 
Q(\/k). Supposing now that Q(s/ — d) has class number 1 so that there 
is just one form ƒ which can be taken as x2+xy+l(l +d)y2, and choos­
ing £ = 21 so that h(k) = l, € = | ( 5 + V21) and AQ = 0} we readily de­
rive the inequality 

32 I 
h(-21d) log e Wd\ < e-Wdl100, 

provided that d is sufficiently large. But T = — 2i log i and so we have 
on the left a linear form in two logarithms of algebraic numbers with 
algebraic coefficients. Gel'fond's work relating to refinements of his 
solution to Hubert 's seventh problem (see [ l l ] ) shows at once that 
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this inequality is untenable if d is larger than some effectively com­
putable number and, in principle therefore, all d in question can be 
found by a finite amount of computation. In practice the bound for 
d turns out to be about 10500 and a determination by machine of all 
solutions of the basic inequality below this figure is quite feasible. 
However, the computation is superfluous here, for it was proved by 
Heilbronn and Linfoot [15] in 1934 that, apart from the nine 
discriminants listed by Gauss, there could be at most one more, and 
calculations [17] had shown that the tenth df if it existed, would 
exceed exp(2-2X107). The argument I have just given is similar to 
that indicated by Gel'fond and Linnik in 1949, but they had access 
to the above formulae only for prime values of k in which case A 0 is 
not 0 ; thus they were led to an inequality involving three logarithms 
of algebraic numbers which they were unable to deal with effectively 
at that time. By a remarkable coincidence both the formulae for 
composite k and the desired effective inequality involving three loga­
rithms became available simultaneously in 1966. 

Let us now consider the analogous problem for class number 2. If 
Q{\/-"d) has class number 2 then it is easily seen that d is congruent 
to 3 or 4 (mod 8), provided d>15. Further, when d = 4 (mod 8) one 
can immediately write down two inequivalent quadratic forms with 
discriminant — d in which the coefficients of x2 are 1 and 2 respec­
tively, and thus the method described for the class number 1 problem 
is applicable with only simple modifications (see [5]). There remains 
the case d=3 (mod 8). The theory of genera shows that then d — pq, 
where p, q are primes congruent to 1 and 3 (mod 4) respectively. 
On signifying by x'(n) one of the generic characters associated with 
forms of discriminant — d and writing 

xMW=( ), X P W ^ I - ) > x<zM=(—)> x W = ( ~ ) , 
\ n / \n/ \ n / \n / 

where k denotes an integer = 1 (mod 4) with (k, pq) = 1, we deduce 
from classical results of Dirichlet and Kronecker that 

i ( l , x ) i ( l , XXPO) + L(l, XXPW, XXa) 

= \ E Ê E (X(F) + xx'(F))(F(x, y))~\ 
(«,y)^(o,o) 

where F runs through a pair ƒ, f of inequivalent quadratic forms with 
discriminant —d. We can assume that ƒ is the principal form whence 
%'(ƒ) == 1, x ' ( / 0 = — 1 for all x, y. On substituting into the above equa-
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tion and appealing again to Dirichlet's results we obtain 

kV^Pql £ £ x(p_ = m K „ k p q ) log £ + Kkp)K„kq) log ̂  
(*,W)^(0,0) 

where h(l) denotes the class number of Q(V0 and €, rj denote the 
fundamental units in Q(\/k), Q(V(kp)) respectively. Finally, taking 
& = 21 and employing similar arguments to those applied in the case 
of the class number 1 problem we reach the inequality 

64 
h{-2U) log € + h(21p)h(-21q) log v Wd < exp 

( - » 

This has the form 

| P log a + P' log a' + P" log a" \ < e~m, 

where the /3's denote algebraic numbers with degrees at most 2, and 
a=?7, a' = e, a"' = — 1 , H=\/d, 5 = 1/10. Further, the heights of the 
/3's are bounded above by an absolute power of H and the height A of 
a is bounded above by pcVp for some absolute constant c. If q^d1/A 

then the coefficient of x2 in f can be taken as q and again the method 
employed for the resolution of the class number 1 problem is applica­
ble; thus we can assume that q>dllA whence p^d*IA. I t is now clear 
that to complete the determination of all the imaginary quadratic 
fields with class number 2 it suffices to establish an estimate 
H<C(log A)1+t for any e > 0 , where C=C(e) is effectively computa­
ble; and this is precisely the result that Stark [19] and I [o] obtained 
independently during the summer. 

Estimates of the latter kind had occurred previously in connexion 
with studies concerning the effective solution of Diophantine equa­
tions [4], but the arguments used there lead only to an exponent 2 + e 
and not a value < 2 as required. Our reductions were obtained by 
somewhat different techniques, Stark's exposition resting heavily on 
the fact that the a's are fundamental units in quadratic fields while 
mine utilized the special condition a" = — 1. Recently we have suc­
ceeded in combining our methods and have obtained thereby a gen­
eral improvement [9]; we have shown in fact that if a%f • • • , an, 
ft, • • • , ft are nonzero algebraic numbers with degrees at most d, if 
«i, • • • , arw_i have heights at most A', an and ft, • • • , j8w have 
heights a t most A and B respectively and if e > 0 , 5 > 0 and 
0 < | f t log « i + • • • + f t log an\ <e~m for some H>evlo*B then 
i ï < C ( l o g A)1+e, where C=C(n, d, e, 5, A') is effectively computable. 
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And very recently, by further developments of these techniques, there 
has been established, in the case when the jS's are rational integers, a 
still stronger result incorporating several earlier theorems as special 
cases (see [7]). This asserts, namely, that if «i, • • • , an are nonzero 
algebraic numbers with degrees a t most d and if the heights of 
ai, • • • , an~i and an are a t most A' and ^ 4 ( ^ 2 ) respectively then, for 
some effectively computable number C depending only on n} d and 
A', the inequalities 

0 < | bx log ai + • • • + bn log an | < C~l°* A l o« B 

have no solution in rational integers &i, • • • , bn with absolute values 
a t most B ( ^ 2 ) . Weaker forms of the assertion have been utilized 
extensively in the study of number-theoretical problems and most of 
the results obtained in this respect can now be sharpened. In particu­
lar the theorem yields a further effective improvement upon Liou-
ville's inequality of 1844 relating to the approximation of algebraic 
numbers by rationals; it can in fact be shown that for any algebraic 
number a with degree n^3 there exist positive effectively com­
putable numbers c, K, depending only on a, such that 

I a — P/q I > cq~n+Kllog Io« q 

for all rationals p/q (g>0) . An improvement of the number on the 
right to cq~K where K = K(CX) <n would follow from the substitution of 
log A log B in the above inequality by log A+eB for arbitrary 
€ > 0 . 

Apart from the particular class number questions we have just dis­
cussed, the theory of transcendental numbers has also been em­
ployed to study several other problems in this field. For instance it 
has been used by Anfert'eva and Cudakov [ l ] , [2] to make effective 
certain results of Linnik on the average of the minimum of the norm 
function over ideals in a given class, and it has further been utilized 
in some recent joint studies with Schinzel concerning the genera of 
binary quadratic forms [8]. Furthermore it is, I gather, in the process 
of being developed to yield results on the class number of quadratic 
extensions of wider fields than the rationals. Nevertheless the general 
question of determining all imaginary quadratic fields with a pre­
scribed class number > 2 remains open. I t would seem, however, that 
transcendental number theory provides, at present, the most promis­
ing platform for the launching of further investigations towards the 
solution of questions of this character and I should expect it to con­
tinue to play an important rôle in future researches. 
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