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Introduction. S. Bergman [ l] and I. N. Vekua [7] have both 
constructed integral operators which map analytic functions of one 
complex variable onto solutions of the elliptic equation 

(1) uxx + uyy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0. 

We wish to announce in this note the extension of these results to the 
three-variable case, i.e. the equation 

uxx + uyy + uzt + a(x, y, z)ux + b(x, y, z)uy 

+ c(x, y, z)ue + d(x, y, z)u = 0 

where a, b, c, d are real valued entire functions of the (complex) vari
ables x, y1 z. (With minor modifications we could have assumed only 
that a, b, c, d are analytic in some ball containing the origin.) Partial 
results on integral operators for equation (2) (in the special case when 
a=zb = c = 0) have been obtained by Bergman [ l ] , Tjong [6], Colton 
and Gilbert [4], and Gilbert and Lo [5]. 

Main results. Let X = x, Z = %(y+iz), Z* = i(~y+iz). Then equa
tion (2) becomes 

Uxx - Uzz* + A (X, Z, Z*) Ux + B(X, Z,Z*) Uz 

+ C(Z, Z, Z*) Uz* + D(X, Z, Z*) U = 0 

where 

U(X, Z, Z*) - «(*, y, z), 

A{X,Z,Z*)=a{x,y,z\ 

(4) B(X, Z, Z*) = J(6(«, y, z) + ic(x, y, z)) 

C(X, Z, Z*) = §(-&(*, y, z) + ic(x, y, z)) 

D(X, Z, Z*) - d(x, y, z). 

The substitution 
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(5) V(X, Z, Z*) = U(X, Z, Z*) exp ["- ƒ C(X, Z', Z*) rfZ'l 

yields the following equation for V(X, Z, Z*), 

Vxx - Vzz* + Â(X, Z, Z*)VX + B{Xy Z, Z*)VZ 
W 

+ D(X, Z, Z*)F = 0, 
where Â, B, D are expressible in terms of the coefficients A, B, C, D. 
Let UQ(X, Z, Z*) be the real valued, entire solution of equation (3) 
which satisfies the Goursat data Uo(Xt 0, Z*) = Uo(X, Z, 0) = 1. Note 
that in the special case when D = 0 we can choose Uo=l. In the 
general case when D?*Q, Uo can be constructed via the recursive 
scheme 

-r.a 
U0 = 1 + lim Wn, 

n-*oo 

Z*/dWn dWn dWn Wn+1= (—z^r + A—— + B-
. . . dX2 dX dZ 

(7) 
dWn \ 

+ C + DWn ~ D ) dZ'dZ*', 
dZ* I 

W* = 0. 
By introducing the variables 

«i = 2fZ, 

£s = X + 2f Z, 
(8) 

t, = x + irlz*, 
M = itti + eo = * + rz + r1^*, 

where J" is a complex variable such that 1—€<|f| < l + e , 0<€<§, 
we can now state the following theorem. In the theorems which 
follow "Re" denotes "take the real part" and "Im" denotes "take 
the imaginary part." 

THEOREM 1. Let 

oo 

(9) E*{h, it, s„ f, o = E i v ^ t t i , &, it, r) 

where 
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(n+1) ~ ~ (n+1) 
pX - i ( i l * + B*t)p 

1 ' (n) , . (») . (n) „ ( n ) , , r . , „ *„ , . v . (n) 

(10) 

{Pu + Pu - W - 2*? + (1* + 2 5 * ^ 

P(1)fe, & *., r) = exp[y ƒ l(^* + s*ïï «*']> 
^ ( n f l ) (0 , fc, *„ f) = 0, n = 1, 2, - . . , 

£< = d£ /d&, £;y = d p /dÇidÇj, 

with Â*fo, fe, & , J ) = J ( X , Z, Z*), £*(&, fc, &, f) = 5(X, Z, Z*), 
-5*(£i, £2, £3, r) = D(X, Z, Z*). 7 7 ^ the following is true: 

(1) £*(&, fc, £,, f, t)=E(X, Z, Z*, f, 0 w r*g«tor «n GRXBXT 
whereGB={(èi,h,b):\Zi\ <i? , i = 1, 2, 3} f J?= {f :1 —e< | f| < l + e } , 
r = { / : | / | g l } , and R is an arbitrarily large positive number. 

(2) If U(X, Z, Z*) is a real valued (for (x, y, z) real) solution of equa
tion (3) which is regular in some neighborhood of the origin, then there 
exists an analytic function j•(/*, f) which is regular f or fi in some neigh
borhood of the origin and | f | < l + e , such that locally 

(11) U(X, Z, Z*) = U(Q, 0, 0) W , Z, Z*) + Re C3{/}, 

C3{/} = -^ f f expT f C(X, Z', Z*) dZ'l 
. ^7TW | f | = l ^ - l L^O J 

•£(x, z, z*, r, W i - p), r) (1 _̂ 2)1/2 ^ • 
(3) /ƒ 

oo oo 

(13) U(X, 0, Z*) - U(0, 0, 0) = £ 2 Tn»X"Z*m, 
n=0 m=0;n+w^O 

(14) C(X, Z, Z*) = C(X, - Z * , -Z), x,y,z real, 

then 

(is) M r ) - Z S «~ \_ 1 ) r n M-r, 
n=0 m=0 L\n -Y 2)*- \2J 
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where 

0n-l,O = 7n0, n ^ 1, 

2n lm ! ^ n ! 
an+wt-l,wt = ~ ; — Jnm "- 2 ^ ; - — àkm7n-k,0, M â 0 , W > 0 , 

(w + m) ! &=o (w + m) Ik ! 
(16) 

exp I ƒ C(X, Z', 0) dZ' 1 j 

(The finite series in equation (16) is omitted when n = 0.) 

The fact that every real valued twice continuously differentiate 
solution of equation (2) (i.e., a regular solution of equation (3)) can 
be represented in the form of equation (11) now leads to the following 
theorem : 

THEOREM 2. Let G be a bounded, simply connected domain in 
Euclidean three space, and, for x, y, z real, define 

Uo(x, y, z) = Uo(X, Z, Z*) 

(17) «2n,m(*,3S*) = ReC3{MnH, 0 ^ » < o o , w = 0 , l , • • • , n + l, 

«2n+i.»(*, y, z) = Im Cz{iinÇm}, 0 ^ » < » , w = 0,1, • • • ,» + 1. 

Then the set {u0} VJ {unm} is a complete family of solutions f or equation 
(2) in the space of real valued solutions of equation (2) defined in G. 

Special cases, (a) A=B = C = 0. 

THEOREM 3. Assume A—B = C=0, and let 

(18) £ * & , fc, *„ f, 0 = 1 + £ / 2 W ( " + 1 ) (£ i , fc, &, f) 

wAere /Ae £(tt) are defined by equation (10) with A = B = 0. Then 
(1) £*(£lf £2, Ét, ff 0 = Ë(X, Z, Z*, f, 0 is regular in GRXBXT. 

(2) Every real valued solution U(X, Z, Z*) of equation (3) which is 
regular in some neighborhood of the origin can be represented locally 
in the form 

(19) U(X, Z, Z*) = Re P3{/} 

where 

(20) I f r+l - dt rff 



756 DAVID COLTON 

and 

(21) ƒ0., !) = - ! - { g(M(l - <2), f) ^ 

(22) gO*, f) = 2 ^ M ƒ Ü(/M> 0, (1 - OMD * ] - ^(M, 0, 0). 

7w equation (21) 7 ' is a rectifiable arc joining the points t= — 1 awd 
2 = + 1 and not passing through the origin. 

(b) A=B = C = D = 0. 
In the special case when A=B = C=D = 0, the operator P8 reduces 

to the well-known Bergman-Whittaker operator B3 [l] and equation 
(22) gives a new inversion formula for the operator Re B*. 

Complete proofs of the results stated in this announcement will 
appear in [2] and [3], 
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