# BERGMAN OPERATORS FOR ELLIPTIC EQUATIONS IN THREE INDEPENDENT VARIABLES 

BY DAVID COLTON

Communicated by Fred Brauer, March 25, 1971
Introduction. S. Bergman [1] and I. N. Vekua [7] have both constructed integral operators which map analytic functions of one complex variable onto solutions of the elliptic equation

$$
\begin{equation*}
u_{x x}+u_{y y}+a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=0 \tag{1}
\end{equation*}
$$

We wish to announce in this note the extension of these results to the three-variable case, i.e. the equation

$$
\begin{align*}
u_{x x}+u_{y y}+u_{z z}+a(x, y, z) u_{x} & +b(x, y, z) u_{y} \\
& +c(x, y, z) u_{z}+d(x, y, z) u=0 \tag{2}
\end{align*}
$$

where $a, b, c, d$ are real valued entire functions of the (complex) variables $x, y, z$. (With minor modifications we could have assumed only that $a, b, c, d$ are analytic in some ball containing the origin.) Partial results on integral operators for equation (2) (in the special case when $a=b=c=0$ ) have been obtained by Bergman [1], Tjong [6], Colton and Gilbert [4], and Gilbert and Lo [5].

Main results. Let $X=x, Z=\frac{1}{2}(y+i z), Z^{*}=\frac{1}{2}(-y+i z)$. Then equation (2) becomes

$$
\begin{align*}
U_{X X}-U_{Z Z^{*}} & +A\left(X, Z, Z^{*}\right) U_{X}+B\left(X, Z, Z^{*}\right) U_{Z} \\
& +C\left(X, Z, Z^{*}\right) U_{Z^{*}}+D\left(X, Z, Z^{*}\right) U=0 \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
U\left(X, Z, Z^{*}\right) & =u(x, y, z) \\
A\left(X, Z, Z^{*}\right) & =a(x, y, z) \\
B\left(X, Z, Z^{*}\right) & =\frac{1}{2}(b(x, y, z)+i c(x, y, z))  \tag{4}\\
C\left(X, Z, Z^{*}\right) & =\frac{1}{2}(-b(x, y, z)+i c(x, y, z)) \\
D\left(X, Z, Z^{*}\right) & =d(x, y, z)
\end{align*}
$$

The substitution

[^0]\[

$$
\begin{equation*}
V\left(X, Z, Z^{*}\right)=U\left(X, Z, Z^{*}\right) \exp \left[-\int_{0}^{Z} C\left(X, Z^{\prime}, Z^{*}\right) d Z^{\prime}\right] \tag{5}
\end{equation*}
$$

\]

yields the following equation for $V\left(X, Z, Z^{*}\right)$,

$$
\begin{align*}
V_{X X}-V_{z Z^{*}}+\tilde{A}\left(X, Z, Z^{*}\right) V_{X} & +\tilde{B}\left(X, Z, Z^{*}\right) V_{z}  \tag{6}\\
& +\tilde{D}\left(X, Z, Z^{*}\right) V=0
\end{align*}
$$

where $\tilde{A}, \tilde{B}, \tilde{D}$ are expressible in terms of the coefficients $A, B, C, D$. Let $U_{0}\left(X, Z, Z^{*}\right)$ be the real valued, entire solution of equation (3) which satisfies the Goursat data $U_{0}\left(X, 0, Z^{*}\right)=U_{0}(X, Z, 0)=1$. Note that in the special case when $D=0$ we can choose $U_{0} \equiv 1$. In the general case when $D \neq 0, U_{0}$ can be constructed via the recursive scheme

$$
\begin{gather*}
U_{0}=1+\lim _{n \rightarrow \infty} W_{n} \\
W_{n+1}=\int_{0}^{Z} \int_{0}^{Z^{*}}\left(\frac{\partial^{2} W_{n}}{\partial X^{2}}+A \frac{\partial W_{n}}{\partial X}+B \frac{\partial W_{n}}{\partial Z}\right.  \tag{7}\\
\left.+C \frac{\partial W_{n}}{\partial Z^{*}}+D W_{n}-D\right) d Z^{\prime} d Z^{* \prime} \\
W_{0}=
\end{gather*}
$$

By introducing the variables

$$
\begin{align*}
& \xi_{1}=2 \zeta Z \\
& \xi_{2}=X+2 \zeta Z \\
& \xi_{3}=X+2 \zeta^{-1} Z^{*}  \tag{8}\\
& \mu=\frac{1}{2}\left(\xi_{2}+\xi_{3}\right)=X+\zeta Z+\zeta^{-1} Z^{*}
\end{align*}
$$

where $\zeta$ is a complex variable such that $1-\epsilon<|\zeta|<1+\epsilon, 0<\epsilon<\frac{1}{2}$, we can now state the following theorem. In the theorems which follow "Re" denotes "take the real part" and "Im" denotes "take the imaginary part."

Theorem 1. Let

$$
\begin{equation*}
E^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta, t\right)=\sum_{n=1}^{\infty} t^{2 n} \mu^{n} p^{(n)}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{1}^{(n+1)}- \frac{1}{2}\left(\tilde{A}^{*}+\tilde{B}^{*} \zeta\right) p^{(n+1)} \\
&= \frac{1}{2 n+1}\left\{p_{22}^{(n)}+p_{33}^{(n)}-4 p_{13}^{(n)}-2 p_{23}^{(n)}+\left(\tilde{A}^{*}+2 \tilde{B}^{*} \zeta\right) p_{2}^{(n)}\right. \\
&\left.+\tilde{A}^{*} p_{3}^{(n)}+2 \widetilde{B}^{*} \zeta p_{1}^{(n)}+\tilde{D}^{*} p^{(n)}\right\},  \tag{10}\\
& p^{(1)}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right)=\exp \left[\frac{1}{2} \int_{0}^{\xi_{1}}\left(\tilde{A}^{*}+\tilde{B}^{*} \zeta\right) d \xi_{1}^{\prime}\right] \\
& p^{(n+1)}\left(0, \xi_{2}, \xi_{3}, \zeta\right)=0, \quad n=1,2, \cdots, \\
& p_{i}^{(n)}=\partial p^{(n)} / \partial \xi_{i}, \quad p_{i j}^{(n)}=\partial^{2} p^{(n)} / \partial \xi_{i} \partial \xi_{j},
\end{align*}
$$

with $\tilde{A}^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right)=\tilde{A}\left(X, Z, Z^{*}\right), \tilde{B}^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right)=\widetilde{B}\left(X, Z, Z^{*}\right)$, $\widetilde{D}^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right)=\widetilde{D}\left(X, Z, Z^{*}\right)$. Then the following is true:
(1) $E^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta, t\right)=E\left(X, Z, Z^{*}, \zeta, t\right)$ is regular in $G_{R} \times B \times T$ where $G_{R}=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right):\left|\xi_{i}\right|<R, i=1,2,3\right\}, B=\{\zeta: 1-\epsilon<|\zeta|<1+\epsilon\}$, $T=\{t:|t| \leqq 1\}$, and $R$ is an arbitrarily large positive number.
(2) If $U\left(X, Z, Z^{*}\right)$ is a real valued (for ( $x, y, z$ ) real) solution of equation (3) which is regular in some neighborhood of the origin, then there exists an analytic function $f(\mu, \zeta)$ which is regular for $\mu$ in some neighborhood of the origin and $|\zeta|<1+\epsilon$, such that locally

$$
\begin{equation*}
U\left(X, Z, Z^{*}\right)=U(0,0,0) U_{0}\left(X, Z, Z^{*}\right)+\operatorname{Re} C_{3}\{f\} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{3}\{f\}=\frac{1}{2 \pi i} \int_{|\xi|=1} \int_{-1}^{+1} \exp \left[\int_{0}^{Z} C\left(X, Z^{\prime}, Z^{*}\right) d Z^{\prime}\right] \tag{12}
\end{equation*}
$$

$$
\cdot E\left(X, Z, Z^{*}, \zeta, t\right) f\left(\mu\left(1-t^{2}\right), \zeta\right) \frac{d t}{\left(1-t^{2}\right)^{1 / 2}} \frac{d \zeta}{\zeta}
$$

(3) If

$$
\begin{gather*}
U\left(X, 0, Z^{*}\right)-U(0,0,0)=\sum_{n=0}^{\infty} \sum_{m=0 ; n+m \neq 0}^{\infty} \gamma_{n m} X^{n} Z^{* m}  \tag{13}\\
\left.\overline{C( } X, Z, Z^{*}\right)=\overline{C\left(X,-Z^{*},-Z\right)}, \quad x, y, z \text { real }, \tag{14}
\end{gather*}
$$

then

$$
\begin{equation*}
f(\mu, \zeta)=\sum_{n=0}^{\infty} \sum_{m=0}^{n+1} a_{n m} \frac{\Gamma(n+2)}{\Gamma\left(n+\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right)} \mu^{n} \zeta^{m} \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{n-1,0}=\gamma_{n 0}, \quad n \geqq 1, \\
a_{n+m-1, m}=\frac{2 n!m!}{(n+m)!} \gamma_{n m}-\sum_{k=0}^{n-1} \frac{n!}{(n+m)!k!} \delta_{k m} \gamma_{n-k, 0}, n \geqq 0, m>0  \tag{16}\\
\delta_{k m}=\left(\frac{\partial^{k+m}}{\partial X^{k} \partial Z^{* m}} \exp \left[\int_{0}^{-Z^{*}} \bar{C}\left(X, Z^{\prime}, 0\right) d Z^{\prime}\right]\right)_{X=Z^{*}=0}
\end{gather*}
$$

(The finite series in equation (16) is omitted when $n=0$.)
The fact that every real valued twice continuously differentiable solution of equation (2) (i.e., a regular solution of equation (3)) can be represented in the form of equation (11) now leads to the following theorem:

Theorem 2. Let $G$ be a bounded, simply connected domain in Euclidean three space, and, for $x, y, z$ real, define

$$
\begin{align*}
& u_{0}(x, y, z)=U_{0}\left(X, Z, Z^{*}\right) \\
u_{2 n, m}(x, y, z)= & \operatorname{Re} C_{3}\left\{\mu^{n} \zeta^{m}\right\}, \quad 0 \leqq n<\infty, m=0,1, \cdots, n+1  \tag{17}\\
u_{2 n+1, m}(x, y, z)= & \operatorname{Im} C_{3}\left\{\mu^{n} \zeta^{m}\right\}, \quad 0 \leqq n<\infty, m=0,1, \cdots, n+1
\end{align*}
$$

Then the set $\left\{u_{0}\right\} \cup\left\{u_{n m}\right\}$ is a complete family of solutions for equation (2) in the space of real valued solutions of equation (2) defined in $G$.

Special cases. (a) $A=B=C=0$.
Theorem 3. Assume $A=B=C=0$, and let

$$
\begin{equation*}
\tilde{E}^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta, t\right)=1+\sum_{n=1}^{\infty} t^{2 n} \mu^{n} p^{(n+1)}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta\right) \tag{18}
\end{equation*}
$$

where the $p^{(n)}$ are defined by equation (10) with $\widetilde{A}=\widetilde{B}=0$. Then
(1) $\tilde{E}^{*}\left(\xi_{1}, \xi_{2}, \xi_{3}, \zeta, t\right)=\tilde{E}\left(X, Z, Z^{*}, \zeta, t\right)$ is regular in $G_{R} \times B \times T$.
(2) Every real valued solution $U\left(X, Z, Z^{*}\right)$ of equation (3) which is regular in some neighborhood of the origin can be represented locally in the form

$$
\begin{equation*}
U\left(X, Z, Z^{*}\right)=\operatorname{Re} P_{3}\{f\} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{3}\{f\} \\
& \quad=\frac{1}{2 \pi i} \int_{|\zeta|=1} \int_{-1}^{+1} \tilde{E}\left(X, Z, Z^{*}, \zeta, t\right) f\left(\mu\left(1-t^{2}\right), \zeta\right) \frac{d t}{\left(1-t^{2}\right)^{1 / 2}} \frac{d \zeta}{\zeta} \tag{20}
\end{align*}
$$

and

$$
\begin{gather*}
f(\mu, \zeta)=-\frac{1}{2 \pi} \int_{\gamma^{\prime}} g\left(\mu\left(1-t^{2}\right), \zeta\right) \frac{d t}{t^{2}}  \tag{21}\\
g(\mu, \zeta)=2 \frac{\partial}{\partial \mu}\left[\mu \int_{0}^{1} U(t \mu, 0,(1-t) \mu \zeta) d t\right]-U(\mu, 0,0) \tag{22}
\end{gather*}
$$

In equation (21) $\gamma^{\prime}$ is a rectifiable arc joining the points $t=-1$ and $t=+1$ and not passing through the origin.
(b) $A=B=C=D=0$.

In the special case when $A=B=C=D=0$, the operator $P_{3}$ reduces to the well-known Bergman-Whittaker operator $B_{3}[1]$ and equation (22) gives a new inversion formula for the operator $\operatorname{Re} B_{3}$.

Complete proofs of the results stated in this announcement will appear in [2] and [3].

## References

1. S. Bergman, Integral operators in the thory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 23, Springer-Verlag, Berlin, 1961. MR 25 \#5277.
2. D. Colton, Integral operators for elliptic equations in three independent variables. I, Applicable Analysis (to appear).
3. ——, Integral operators for elliptic equations in three independent variables. II, Applicable Analysis (to appear).
4. D. Colton and R. P. Gilbert, An integral operator approach to Cauchy's problem for $\Delta_{p+2} u(\mathbf{x})+F(\mathbf{x}) u(\mathbf{x})=0$, SIAM J. Math. Anal. 2 (1971), 113-132.
5. R. P. Gilbert and C. Y. Lo, On the approximation of solutions of elliptic partial differential equations in two and three dimensions, SIAM J. Math. Anal. 2 (1971), 17-30.
6. B. L. Tjong, Operators generating solutions of $\Delta_{3} \psi(x, y, z)+F(x, y, z) \psi(x, y, z)=0$ and their properties, Analytic Methods in Math. Phys., Gordon and Breach, New York, 1970.
7. I. N. Vekua, New methods for solving elliptic equations, OGIZ, Moscow, 1948; English transl., Series in Appl. Math., vol. 1, North-Holland, Amsterdam; Interscience, New York, 1967. MR 11, 598; MR 35 \#3243.

Indiana University, Bloomington, Indiana 47401


[^0]:    AMS 1970 subject classifications. Primary 35A20, 35C15; Secondary 35J15.
    Key words and phrases. Integral operators, elliptic equations, analytic functions, complete families.

