GEOMETRIC THEORY OF DIFFERENTIAL EQUATIONS. THE LJAPUNOV INTEGRAL FOR MONOTONE COEFFICIENTS

BY H. GUGGENHEIMER¹

Communicated by James Serrin, March 3, 1971

An equation

(1)
$$x'' + p(t)x = 0, -\infty < t < \infty, p(t) > 0,$$

can be considered as the Frenet equation of a locally convex curve $x(t) = (x_1(t), x_2(t))$ in unimodular centroaffine differential geometry [1]. The osculating ellipse E_u at x(u) is the solution of

$$y'' + p(u)y = 0$$
, $y(u) = x(u)$, $y'(u) = x'(u)$.

We prove an unimodular centroaffine Kneser theorem:

THEOREM 1. If p(t) is strictly monotone and differentiable in an interval [a, b], then every osculating ellipse E_t , $t \in [a, b]$, contains all osculating ellipses of smaller area defined on the same interval in its interior.

The area of the osculating ellipse is proportional to $p(t)^{-1/2}$. By the Jordan curve theorem, the assertion is true if it is true for neighboring points. Then it is easily checked that a pair of conjugate diameters of the smaller ellipse is in the interior of the larger one. The approximation and convergence theorems of convexity imply:

THEOREM 2. If p(t) is monotone and continuous in [a, b], then every osculating ellipse E_t , $t \in [a, b]$, contains all osculating ellipses of smaller area defined on the same interval.

The parameter t-u is equal to two times the area covered by the radius vector of x(t) and $\int_u^t p(\tau) d\tau$ is equal to two times the area covered by the radius vector of the polar reciprocal $x^*(t)$ of x for the unit circle, if x(t) is a curve of unit Wronskian [1, §3]. For p monotone increasing, the curve x and the osculating ellipses E_t $(t \ge u)$ are contained in E_u , and $x^*(\tau)$, E_τ^* $(u \le \tau \le t)$ are in E_t^* .

Let $\phi(u)$ be the conjugate point of u for (1), i.e., the zero following

AMS 1970 subject classifications. Primary 34B05, 53A40, 34C10; Secondary 34A40, 53A15.

Key words and phrases. Unimodular centroaffine differential geometry, Kneser theorem, Ljapunov integral, conjugate point, co-conjugate point.

¹ Research partially supported by NSF Grant No. GP-19133.

u of a nontrivial solution of (1) that vanishes at u. Let $\psi(u)$ be the co-conjugate point of u for (1), i.e., the zero following u of the derivative of a nontrivial solution of (1) whose derivative vanishes at u. A major topic in the study of equations (1) are estimates of the Ljapunov integral

$$L(u) = \left[\phi(u) - u\right] \int_{u}^{\phi(u)} p(t) dt.$$

We suppose that p(t) is monotone increasing and continuous and that $\phi(u) < \infty$. As an application of Theorem 2, we have

$$\pi p(\phi(u))^{-1/2} \le \phi(u) - u \le \pi p(u)^{-1/2},$$

$$\pi p(u)^{1/2} \le \int_{u}^{\phi(u)} p(t) dt.$$

If $\psi(u) \ge \phi(u)$, then

$$\int_{u}^{\phi(u)} p(t) dt \leq \pi p(\phi(u))^{1/2}.$$

If $\psi(u) < \phi(u)$, then

$$\int_{u}^{\phi(u)} p(t) dt \leq \frac{3}{2} \pi p(\phi(u))^{1/2}.$$

(The difference $\phi(u) - \psi(u)$ has been investigated in [2].) Together, we obtain:

THEOREM 3. For monotone increasing, continuous, positive p(t), the Ljapunov integral satisfies

$$\pi^{2} \left(\frac{p(u)}{p(\phi(u))} \right)^{1/2} \leq L(u) \leq \left[1 + \frac{1+\epsilon}{4} \right] \pi^{2} \left(\frac{p(\phi(u))}{p(u)} \right)^{1/2},$$

$$\epsilon = \operatorname{sgn}[\phi(u) - \psi(u)].$$

REFERENCES

- 1. H. Guggenheimer, Hill equations with coexisting periodic solutions, J. Differential Equations 5 (1969), 159-166. MR 39 #550.
- 2. ——, Geometric theory of differential equations, III. Second order equations on the reals, Arch. Rational Mech. Anal. (to appear).

POLYTECHNIC INSTITUTE OF BROOKLYN, BROOKLYN, NEW YORK 11201