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An equation 

(1) %" + p(t)x = 0, - oo <t < oo, p(t)>0, 

can be considered as the Frenet equation of a locally convex curve 
x(t)~(xi(t)y x2(t)) in unimodular centroaffine differential geometry 
[ l ] . The osculating ellipse Eu a t x(u) is the solution of 

y" + pMy = 0, y(u) = %{u), y\u) = %\u). 

We prove an unimodular centroaffine Kneser theorem : 

THEOREM 1. If p(t) is strictly monotone and differ entiable in an in­
terval [a, b], then every osculating ellipse Et, t(E[a, 6], contains all 
osculating ellipses of smaller area defined on the same interval in its in­
terior. 

The area of the osculating ellipse is proportional to p(t)~112. By 
the Jordan curve theorem, the assertion is true if it is true for neigh­
boring points. Then it is easily checked that a pair of conjugate 
diameters of the smaller ellipse is in the interior of the larger one. 
The approximation and convergence theorems of convexity imply: 

THEOREM 2. If p(t) is monotone and continuous in [a, b]t then every 
osculating ellipse Et, tÇz [a, b]> contains all osculating ellipses of smaller 
area defined on the same interval. 

The parameter t — u is equal to two times the area covered by the 
radius vector of x(t) and f I p(r) dr is equal to two times the area 
covered by the radius vector of the polar reciprocal x*(t) of x for the 
unit circle, if x(t) is a curve of unit Wronskian [l , §3]. For p mono­
tone increasing, the curve x and the osculating ellipses Et (t^u) are 
contained in EU1 and x*(r), E* (u^rSt) are in Et. 

Let 4>{u) be the conjugate point of u for (1), i.e., the zero following 
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u of a nontrivial solution of (1) that vanishes at u. Let ^{u) be the 
co-conjugate point of u for (1), i.e., the zero following u of the deriva­
tive of a nontrivial solution of (1) whose derivative vanishes at u. A 
major topic in the study of equations (1) are estimates of the Ljapu-
nov integral 

dt. L{u) = [*(«) - u] ƒ p(t) 

We suppose that pit) is monotone increasing and continuous and that 
4>iu) < oo. As an application of Theorem 2, we have 

Tpitiu))-1'2 ^ <t>iu) - « g irpiu)-li\ 

u 

If ^ ( M ) ; > 0 ( # ) , then 

ƒ. #(/) A g irpi<l>iu))ll\ 

ll}//(u)<<l>(u)t then 

ƒ. *%(O*^y^(0(«))^. 

(The difference <j>iu)—\piu) has been investigated in [2].) Together, 
we obtain: 

THEOREM 3. For monotone increasing, continuous, positive pit), 
the Ljapunov integral satisfies 

W(«)) I L 4 J V piu) ) ' 
e = sgn[>0) - \[/iu)]. 
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