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ABSTRACT. Many wave propagation phenomena of classical 
physics are governed by equations of the Schrödinger form iDtu 
*=Aw where 

(1) A - - iEtà-i't* AêDj. 

(E(x) and the Aj are Hermitian matrices, E(x) is positive definite 
and the Aj are constant.) The time-evolution of such phenomena 
is described by a group of unitary operators exp(-itA) on the 
Hilbert space 3C with the energy norm 

(2) \\u\\l - f u(x)*E(x)u(x) dx. 
J Rn 

If E(x) is replaced by a constant Eo the corresponding space and 
operator are denoted by Ho and Ao. In this paper it is shown that 
the wave operators 

(3) W±(A, Ao, J) - s-lim exp(*7A)7 exp(-#A0)PÎ° 
«-•±«0 

exist and are complete if A.o(p) ^-E^1 HCj-i Ajpj satisfies 

(4) rank AQ(p) =m-k for all p £ Rn - {0}, 

E(x) and DjE(x) are continuous and bounded (j = l, 2, • • • , w), 
E(x) is uniformly positive definite, \im\x\+„E(x)=EQ uniformly in 
x/\x\ and 

(5) f (1 + | x |2)" | E(x) - Eo \*dx < oo for some M > »/2. 
J Rn 

(In (3), J:Ho—>H is the identification map; Ju — u, and PQC is 
the orthogonal projection onto the absolutely continuous subspace 
for Ao. W± are complete if their ranges equal H*°, the absolutely 
continuous subspace for A.) 

1. Wave operators. An abstract theory of scattering with two 
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Hubert spaces was formulated by Wilcox in [ l l ] as an operator-
theoretic description of the scattering phenomena of classical physics, 
and was subsequently developed by T. Kato [7], A. L. Belopol'skiï 
and M. S. Birman [2] and the authors [9]. In this theory the in­
stantaneous states of a wave in a medium are described by the vectors 
of a Hubert space 3C and the time-evolution of the wave is described 
by a group of unitary operators e~itA on 5C with selfadjoint generator 
A. The scattering states of the medium are described by the vectors 
of 3Cac = Pac3C, the subspace of absolute continuity for A [6, p. 516] 
with corresponding orthogonal projection P a c . 

Scattering theory is concerned with the asymptotic behavior for 
t—>± oo of the waves in a medium. This may be studied by comparing 
these waves with those in a second (simpler) medium with state space 
3C0 and generator A0. Let J:5C0—»3C be a bounded linear operator 
which maps 3C0 onto 5C and define the wave operators for the triple 
(A, A0, / ) by 

(1.1) W±(A, Ao,/) = s-lim e Je P 0 , 

when these limits exist (s-lim denotes strong limit). Each scattered 
wave for Ao is asymptotically equal, for t—*+ oo, to a corresponding 
wave for A if and only if these wave operators exist [ l l ] . Moreover, 
the wave operators (1.1) map 3C0 into 3C and are partial isometries 
[6, p. 258] with initial set OCg0 and final set contained in 3Cac [2], [7], 
[l 1 ]. The wave operators are said to be complete if the final set is 3Cac. 
In this case it is known [2], [7], [ l l ] that the wave operators 
W±(A0, A, J*) also exist and are complete, and 

(1.2) W±(A, Ao, / ) * = W(Ao, A, / * ) . 

The principal goal of the abstract theory of scattering is to find 
criteria for the existence and completeness of the wave operators. The 
following theorem was proved by the authors in [9]. 

THEOREM 1.1. Let A and A0 satisfy 
(1.3)/D(Ao)=-D(A), 
(1.4) J*Pac£(A)CPSc£>(Ao), 
(1.5) n(5)(A/-/Ao)no(5)GSi(3C0 > 3C), and 
(1.6) ( J* / - l )P a c n 0 (ô)G^o(5Co) , 

for each bounded interval ÔCZR1. Then the wave operators (1.1) exist and 
are complete. 

In Theorem 1.1, D(A) and D(AQ) denote the domains of A and A0, 
and II(S) and ÏI0(5) their spectral measures [6, p. 355]. J3i(5C0, 3C) 
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denotes the trace class of operators from 3C0 to 3C and 50(3C0) the class 
of compact operators on 3Co [6, p. 519]. The theorem is based on the 
theory of local wave operators developed by M. §. Birman [2], [3]. 

Theorem 1.1 was used in [9] to prove the completeness of the wave 
operators for a class of scattering problems of classical physics. The 
purpose of this announcement is to show that Theorem 1.1 can be 
applied to a significantly larger class of such problems. 

2. Wave equations of classical physics. Many wave propagation 
phenomena of classical physics are governed by equations of the 
Schrödinger form iDtu=Au where A is a matrix partial differential 
operator: 

(2.1) A = - iE(x)-i E AjDh 
i - i 

x = (xi, #2, • • • , x n )£ i ? n , t(~Rl, Dt — d/dty Dj = d/dxj, u~u{x, t) is an 
m X l (column) matrix, E(x) and Ai, A2, • • • , An are rnXtn Hermi-
tian matrices and E(x) is positive definite. Examples include elec­
tromagnetic waves, acoustic waves, elastic waves and other less fa­
miliar phenomena [ l l ] . 

The matrix-valued function E(x) is assumed below to have the 
following additional properties. 

E(x) is uniformly positive definite for x(ERn; that is, the 
(2.2) smallest eigenvalue of E(x) is bounded below by a posi­

tive constant. 

(/) -v E(x), DiE(x), D2E(x), • • • , DnE(x) are continuous and 
bounded for x G Rn. 

It follows that (if M* denotes the conjugate transpose) 

(2.4) (u, v)E = I u(x)*E(x)v(x) dx 

determines an inner product and Hubert space 3C= {ulu(x) is Le-
besgue measurable on Rn and (w, U)E< °° }. Moreover, the restriction 
of A to Cl(Rn; Cm)C.3C is a symmetric operator on 3C which is essen­
tially self adjoint [s]. The unique self adjoint extension of this operator 
is also denoted by A below. 

3. The completeness theorem. Assume that 

(3 j \ lim E(x) = E0 uniformly in x/ | x \ . 
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Then E0 is positive definite by (2.2). Let 3C0 and A0 be the Hilbert 
space and operator (2.1) determined by E0. Then 3C and 3C0 are equiv­
alent [9] and 7:3Co~»5C, Ju = u for all wGXo, is a bounded operator 
which carries 3C0 onto 5C. 

The existence and completeness of W±(A, A0, / ) were proved in [9] 
under assumptions (2.2), (2.3), (3.1), 

(3.2) I (1 + J % Yy I E(x) - E012 dx < 00 for some /* > »/2, 

and 

(3.3) Ao is a uniformly propagative operator. 

Condition (3.3) means that the distinct eigenvalues of 

(3.4) Ao(p) = E ^ £ AsPi 

have constant multiplicity and constant algebraic sign for all p£zRn 

— {0}. The purpose of this announcement is to strengthen the com­
pleteness theorem of [9] by replacing (3.3) by the weaker condition 

(3.5) rank AQ(p) = m - k f or all p G Rn - {OJ. 

Operators A0 with this property are said to have constant deficit k 
[8]. The new theorem may be stated as follows. 

THEOREM 3.1. The wave operators W±(A, A0, / ) exist and are com­
plete if Ay Ao and J are the operators defined above, E(x) and E0 satisfy 
(2.2), (2.3), (3.1) and (3.2) and A0 has constant deficit. 

Condition (3.5) holds if and only if the nonzero eigenvalues of (3.4) 
are bounded away from zero when \p\ = 1 [ l0] . Thus operators A0 

with constant deficit k are precisely those for which the zero eigen­
value oî A0(p) has constant multiplicity k for all pÇ£Rn— {0}. Im­
portant examples of operators with constant deficit which are not 
uniformly propagative occur in the theory of electromagnetic and 
elastic wave propagation in crystals [4, p. 602], [5]. An example 
which does not have constant deficit is provided by Alfvén waves in 
magnetohydrodynamics [4, pp. 612-617]. 

4. Proof of the completeness theorem. Theorem 3.1 was proved in 
[9], under the additional hypothesis (3.3), by using a coerciveness 
theorem for A given in [8] and a construction of the spectral family 
IIo(X) for Ao given in [12] to verify hypotheses (1.3)—(1.6) of The­
orem 1.1. These results were based on (3.3). The proof given in [9] 
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also suffices to prove Theorem 3.1 if the coerciveness theorem of [lO], 
based on (3.5), is used together with the following results. 

THEOREM 4.1. Let Xi(p)èX2(£)è ' * * èX»(£) be the repeated 
eigenvalues of A0(p)f ordered as indicated for all p&Rn. Then each 
\'(P) is continuous on Rn. Moreover, there exist m f unctions r,:iîn—»Cm 

which are Lebesgue measurable on Rn and satisfy Ao(p)rj(p) = Xy(£)ry(£) 
and r,(p)*E0rk(p) = 8jkfor 1 ^ j , k^n and almost allx£:Rn. 

THEOREM 4.2. The spectral family for A0 can be written n0(X) 
=$*Ûo(X)$ where <£> is the Fourier transform on 3C0 with inverse <£* and 
(if HÇK) is the Heaviside function) 

m 

(4.1) fi0(X) = 2 : H(\ - XX-)>X>X•)*£<>. 

Theorem 4.1 was proved by Wilcox in [13], Theorem 4.2 was 
proved by Wilcox in [12] under the additional hypothesis (3.3). I t 
was proved by G. S. S. Avila [ l ] without this hypothesis on the as­
sumption that Theorem 4.1 was true. Hypothesis (3.5) is not needed 
for Theorems 4.1 and 4.2. 

Hypothesis (3.5) is used in [lO] in the proof of the coerciveness 
theorem and again, in the proof of (1.5) and (1.6), to show that the 
nonzero eigenvalues of A0(p) are bounded away from zero (see the 
proof of Lemma 5.2 in [9]). 
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