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1. Introduction. A variety is defined here to be a nonempty class 
of real Hausdorff locally convex spaces (LCS's) closed under the 
operations of taking subspaces (not necessarily closed), separated 
quotients, arbitrary products and isomorphic images. The two ex
treme examples of a variety are the class of all LCS's and the class 
of all zero-dimensional LCS's. Less obvious examples are: 

(a) the class of all Schwartz LCS's [8], 
(b) the class of all nuclear LCS's [26], 
(c) the class of all LCS's having their weak topology [8]. 
The potency of an analogous concept for groups [21] has mani

fested itself for three decades, and for topological groups has quite 
recently been asserted [3], [ l4]-[20]. In this note we announce 
selected results from a forthcoming paper [5] which, we hope, will 
convince the reader that the theory of varieties not only is of intrinsic 
interest, but lends to locally convex spaces a new and illuminating 
perspective which consolidates, strengthens and adds to significant 
parts of the literature. 

2. Results. For any class 6 of LCS's, the variety generated by 6, de
noted by "0(6), is the smallest variety containing G. For example, 
the variety generated by the class of all real Banach spaces is the 
class of all LCS's [26]. 

Consider these seven properties for Banach spaces: (i) reflexivity; 
(ii) quasi-reflexivity [4]; (iii) almost reflexivity [10]; (iv) separabil
ity; (v) having separable dual; (vi) being Hilbertian; (vii) having 
Hamel dimension < fc$, where H is some fixed infinite cardinal. The
orem 1 is a stronger statement than the usual ones about closed sub-
spaces, separated quotients and finite products of Banach spaces 
with one of the above properties. 
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THEOREM 1. If (B is a class of Banach spaces all of which possess a 
given one of the above properties (i)-(vii), then each Banach space E in 
V((&) possesses the same property. 

COROLLARY 2. The class of all varieties is not a set. 

The variety generated by the class of all real No-dimensional 
normed spaces contains no infinite-dimensional Banach space. How
ever, 

THEOREM 3. The variety generated by an arbitrary class of Frêchet 
spaces contains the completion of each of its members. 

If C consists of the single LCS E, then the variety it generates is 
singly generated and denoted by V(E). 

THEOREM 4. A variety is singly generated if and only if it is contained 
in V(h(T)) for some set T. 

COROLLARY 5. Any subvariety of a singly generated variety is singly 
generated. 

The analogues to Corollaries 2 and 6 are false for groups [21 ]. 

COROLLARY 6. Not every variety is singly generated. 

If a variety *U contains an LCS E such that each LCS in V is iso
morphic to a subspace of a product of copies of E, then we say that 
£ is a universal generator for V. 

THEOREM 7. Every singly generated variety has a universal generator. 

Since every separable Banach space is a quotient of h, it follows 
that every separable LCS is contained in V(h). In fact, C([0, l ] ) is a 
universal generator for V(h). (Cf. [12].) Statement (9), §2 of [27] 
implies that every Schwartz space is a subspace of a product of sep
arable normed spaces. Thus we have proved the theorem of A. Todd1, 
that V(k) contains the variety of Schwartz spaces. Using Theorems 
4 and 7 and Corollary 5 we obtain 

THEOREM 8. The variety of Schwartz spaces, and hence also the variety 
of nuclear spaces, has a universal generator. 

A deep result of Kömura and Kömura [9] is that (s) is a universal 
generator for the variety of nuclear spaces, where (s) is the Fréchet 
space of rapidly decreasing sequences. (To our knowledge, no one has 
found a correspondingly serviceable and concrete universal generator 

1 To appear in Mr. Todd's dissertation at the University of Florida. 
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for Schwartz spaces.) Using this result and [2], it is possible to gen
eralize a theorem of Grothendieck so as to imply Theorem 9 below, 
[25]. Grothendieck's original version ([7], also [26, p. 101 ]) implies 
Theorem 9 for the special case E~lp (l^>p^ <x>). 

THEOREM 9. Let E be an arbitrary infinite-dimensional Banach space. 
Then V(E) contains the variety of nuclear spaces. Indeed, each nuclear 
space is isomorphic to a subspace of a product of copies of E. 

Theorem 9 indicates that the variety of nuclear spaces is a rela
tively small one. In regard to absolute smallness we have 

THEOREM 10. (i) The variety of all LCS's with their weak topology 
has R {the reals) as a universal generator, and hence is the smallest non-
trivial variety. 

(ii) There exists a {unique) second smallest variety V^V(R)t in the 
sense that every variety properly containing V{R) must contain V. V has 
(pasa universal generator, where <p is an ^^-dimensional real vector space 
given the strongest locally convex topology [24]. 

(iii) There exists no third smallest variety. 

COROLLARY 11. An LCS E has its weak topology if and only if V{E) 
does not contain (p. 

Also of interest with regard to size is 

THEOREM 12. Any variety generated by an infinite-dimensional 
normed space contains a maximal proper subvariety. 

Finally, we investigate the varieties generated by the well-known 
Banach spaces. Using Theorem 1 and results in [ l ] , [7], [13] and 
[22], we obtain 

THEOREM 13. For 1<ƒ><<*>, K any uncountable compact metric 
space and {s) the Frêchet space of rapidly decreasing sequences of [9], 

V{R) %V{<p) $V{{s)) %V{lp) C {VLP) 

%V{h) = V{C{K)) - V{Lt) %V{L) = V{L„). 

A classical result of Banach [ l ] says that if l<p9*q< <*> then lp 

is not isomorphic to a subspace of lq\ in fact it follows from 

THEOREM 14. lP&V{la)for Kp^q< 00. 

Tha t lp cannot be manufactured from lq using (repeatedly) the 
operations of taking subspaces, quotients and products. 

Since h is a subspace of Lp for 1 ^p^ <*> [28], we have 

COROLLARY 15. V{lp)^V{Lp) for Kp< 00, p^2. 
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Recently, the problem of Banach's linear dimension for Lp has 
been completely solved [ l l ] . The stronger varietal statement is 

THEOREM 16. Let l<p9^q<^. Then the following are equivalent: 

(i) Lpev(La), 
(ii) lPGV(Lq), 
(iii) q<p^2 or 2^p<q. 

By Theorem 1 (iii), every Banach space in V(co) is almost reflexive. 
Surprisingly we have, by using the results of [6], 

THEOREM 17. V(co) contains no infinite-dimensional reflexive Banach 
space. Indeed, no weakly sequentially complete Banach space is in V(co). 

REMARK. By Theorems l(i), 3 and 17 we see that V(c0)r\V(lp), for 
Kp < oo, is a variety which contains no infinite-dimensional normed 
spaces. This emphasizes, by Theorem 9, that no infinite-dimensional 
normed space is nuclear. 

In conclusion we mention the 

THEOREM 18. Let X and Y be compact Hausdorff spaces. If X is dis
persed [23] and Y is not dispersed, then C(Y)Ç£v(C(X)). 
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