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Introduction. I t is well known that a closed orbit of a hamiltonian 
system is preserved under small perturbations of the hamiltonian 
function, provided that the orbit is nondegenerate in a certain sense 
[5, §38], In this announcement, we describe some results about the 
behavior of manifolds of closed orbits of hamiltonian systems under 
perturbation of the hamiltonian function. This yields, in turn, new 
results concerning the existence of closed orbits near equilibria for 
which the linearized system exhibits degenerate behavior. 

1. Periodic manifolds defined. Let (M, œ) be a symplectic mani­
fold. (We follow the notation of [ l ] , to which we refer the reader for 
definitions left unspecified here.) Any real-valued function H on M 
gives rise to a hamiltonian vector field XH on M. A submanifold 
SCAT is called a periodic manifold of XH if the following conditions 
are satisfied : 

(PM 1). S is an invariant manifold of XH) i.e., XH is tangent to S 
at all points of S. 

(PM 2). All the orbits of XH on S are closed, and their periods all 
divide a number r > 0 , called a period of S. 

(PM 3). H is constant on S. 
Let {Ft} <e(R be the flow generated by X#. If S is a periodic manifold 

with period r, FT is the identity on S, and TmFT maps TmM into itself 
for each w G S . If c is the value of H on S, TmFr maps Tm\H~l(c)\ 
into itself and leaves the subspace TmX fixed. TmFT induces, therefore, 
a map Tp

mFT of the "normal" space, Tm[H~1(c)]/Tt^2, into itself. We 
call S nondegenerate if Tv

mFT does not have 1 as an eigenvalue for any 
m £ S . 

For technical reasons connected with our method of proof, we need 
to impose a further condition on periodic submanifolds, called regu­
larity. The precise definition is given in [ l l ]. 

2. Examples. 1. If S consists of a single closed orbit 7, S is non-
degenerate if and only if the characteristic multiplier 1 has multi-
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plicity 1. A single closed orbit is always regular. 
2. If S is all of H~l(c), it is nondegenerate and regular. 
3. What follows here is sometimes known as the "theory of small 

oscillations." (See [ l l ] for a discussion of this terminology.) 
Let (M, co) be a symplectic vector space regarded as a symplectic 

manifold, co being a constant section, and let i f be a quadratic hamil-
tonian. The vector field XH, considered as a map from M to itself, is 
linear, and the flow {FT } which it generates is given by 

n\rn 

FT = exp[rXH] = ] £ — * 

Let VrÇlM be the kernel of FT — I, and suppose that H is positive-
definite on FT. (If i f is negative-definite on VT, replace H by —H.) 
Then H~"1{l)r\VT is a compact, regular, periodic manifold for XH, 
diffeomorphic to a sphere, which must be odd-dimensional because 
XH is a nowhere vanishing vector field on it. A short argument, using 
the definiteness of H on VT, shows that H"1^)^ VT is nondegenerate. 
Finally, we remark that VT is the sum of the eigenspaces of XH cor­
responding to eigenvalues of the form 2imi/r, where n is any integer. 
The definiteness of H on VT excludes the possibility that n be zero. 
(If H is nondegenerate but indefinite on VT, one loses the compactness 
of jff-"1(l)r>\ FT, which is essential for what follows.) 

3. The main theorem. 

THEOREM. Let XQH-1^) be a compact, regular periodic manifold of 
XHI with period r . Given any neighborhood U\ of 2 in M and any 
number €i>0, there exist 

(a) a neighborhood UofH in f/i, 
(b) a number e, 0<€<ei , 
(c) a neighborhood g of H in the space $(M) of real-valued f unctions 

on M in the C2-topology, and 
(d) a mapping P from 8 to the space of 1-forms on U in the C1 topol­

ogy, such that, for every GGS> 
(i) the pullback PC(G) of P{G) to UCMI-^c) is closed, 
(ii) the zero set of PC(G) is equal to the set of closed orbits of XQ 

on UCsH"1^) with periods dividing numbers in the interval (r — e, r + e ) , 
and 

(iii) P is continuous and preserves smooth dependence on param­
eters. 

If S is nondegenerate, then S is a nondegenerate (in the sense of Bott 
[2]) zero manifold for PC(H). It follows that U and 9 can be made small 
enough so that there exists 
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(e) a mapping I from g to the space of embeddings of 2 in U in the 
C1 topologyf such that, for every G £ S , 

(iv) the image of 1(G) is contained in G~~x(c), 
(v) the zero set of the pullback of P(G) to 1(G) is equal to the zero 

setofPe(G). 

If fPÇS, (ft) is zero, any closed 1-form on S is the differential of a 
real-valued function on 2 , which must attain a maximum and a 
minimum. A further topological argument implies that, if the 
dimension of 2 is at least four, any function on 2 whose critical point 
set is a disjoint union of circles must have at least three critical circles. 
The theory of functions whose critical point set is a union of circles is 
not very well developed, but I conjecture that every such function on 
a (2n — 1) -dimensional sphere must have at least n critical circles. 
In any case, the theorem above has the following consequence: 

COROLLARY. Let SCJS"-1^) be a compact, regular, nondegenerate 
periodic manifold of XH, with period r. If if1 (2, (H) =0 , then, given any 
neighborhood UofX in M and any e>0, there exists a C2 neighborhood 
9 of H in ïï(M) such that, for any G£9> XQ has at least two closed 
orbits in U with periods dividing numbers in (r — e, r + e ) . If the dimen­
sion of Hi is at least four, there are at least three such closed orbits. 

4. Applications to the examples, 1. Since a closed form on the circle 
is not necessarily the differential of a function, our theorem as stated 
does not imply the stability of nondegenerate closed orbits mentioned 
in the Introduction. However, a version of the theorem for sym-
plectic mappings can be combined with the existence of a global cross-
section to derive the well-known result. 

2. If 2 is all of H"1^), our results are related to those obtained by 
Moser [4], using the method of averaging. We eliminate Moseys 
requirement of nondegeneracy, and we need not restrict ourselves to 
perturbations depending on a real parameter. This generality is ob­
tained at some expense, however—the closed 1-forms obtained by the 
method of averaging are invariant under the action of XH on 2 , and 
this simplifies the topological problem of estimating the number of 
circles in their zero sets. In some sense, the method of averaging can 
be regarded as a first-order approximation to our method. I t is suffi­
cient in generic cases. More important to mention is that the reading 
of Moser's paper was an important stimulus for the present work. 

3. If we wish to study motion in the neighborhood of an equi­
librium point of a hamiltonian system, Darboux's theorem allows us 
to assume that (M, o>) is a symplectic vector space considered as a 
symplectic manifold. If H is the given hamiltonian function, with a 
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critical point at the origin, define Het for 0 < € ^ 1 , by He(m) 
—H(em)/e2. By defining H0 to be the hessian form of H at the origin, 
we get a family {He} of hamiltonian functions for which H0 is quad­
ratic and which is smooth as a function on MX [0, l ] . Furthermore, 
an easy computation shows that integral curves of He are taken to 
integral curves of H by the transformation m*-*em. Now we can apply 
the results of §3. Let tK be a purely imaginary eigenvalue of XH^ 
Let r = 27r/X. Then Vr is the sum of the eigenspaces of XHQ correspond­
ing to those eigenvalues which are integer multiples of iX. If the 
restriction of H0 to VT is positive-definite (and this is always the case 
when H is the sum of kinetic and potential energy terms, where the 
potential energy has a nondegenerate critical point at the origin), 
then Hö1(l)r\VT is a regular, nondegenerate periodic manifold for 
XHU, diffeomorphic to a sphere of dimension In—-1, n being the sum 
of the multiplicities of those eigenvalues which are positive integer 
multiples of iX. If n = 1, flj^ljn VT is a nondegenerate closed orbit, 
and we may conclude that, for e near zero, XH* has a nearby closed 
orbit on i5Z7x(l)> so that XH has a closed orbit on H*1^2), a result due 
to Liapunov. (See [l].) If n is greater than 1, then S 2 ^ 1 is simply 
connected, and the results of §3 imply that, for € near zero, XH has at 
least 2 closed orbits on H~~l{e2). If n is greater than 2, then 52 n~1 has 
dimension greater than 4, and XH has at least 3 closed orbits on 
H~l(e2). If the conjecture in §3 could be proven, it would imply that 
there are always at least n closed orbits on H~~l{é). Finally, let us note 
that our method seems to yield no results in case H0 is indefinite on 
FT, a case which occurs in physically interesting situations, including 
the restricted 3-body problem. The existence of closed orbits in such 
situations has been proven by Roels [7], using analytic methods akin 
to those originally used by Liapunov. 

5. On the proof of the main theorem. A detailed proof of the results 
announced in this paper will appear in a subsequent publication 
[ l l ] . The proof rests on two basic ideas. The first step is the usual 
one of using local transversal sections to reduce the search for closed 
orbits of a flow to the search for fixed points of a mapping. Since 
there is normally no global transversal section, one must use a family 
of local sections, as did Seifert in his study of certain vector fields on 
S3, [ó], [8]. The second step involves the representation of symplectic 
mappings by closed 1-forms, as described by the author in [9] and 
[lO]. A related technique was used by Meyer in a local setting [3]. 
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