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estimates stemming from Carleman for operators having an imagi
nary part lying in a £-ideal. The latter results make extensive use of 
the theory of analytic functions and especially of entire functions. 

The principal application of these results in this volume is to the 
completeness problem of root spaces. Approximately one-third of the 
book is devoted to this problem along with a study of the various 
kinds of bases which can exist in Hubert space and the notion of 
expansion appropriate to each. The early and fundamental results 
of M. V. Keldys in this area are presented in complete detail. A 
rather thorough presentation of this area is given with various tech
niques being illustrated. Lastly, various asymptotic properties of the 
spectrum of weakly perturbed operators are given. 

In summary this book is a thorough and complete treatment along 
with many worthy contributions of some important but relatively 
neglected areas of abstract operator theory with applications to more 
immediate and concrete problems. We eagerly await the remaining 
two volumes. 

RONALD DOUGLAS 

Introduction to analytic number theory, by K. Chandrasekharan, 
Springer, 1968; Arithmetic functions, by K. Chandrasekharan, 
Springer, 1970; Multiplicative number theory, by Harold Davenport, 
Markham, 1967; Sequences, by H. Halberstam and K. F. Roth, 
Oxford University Press, 1966. 

Recent years have seen an explosion in the number of books in 
most branches of mathematics and this is true of number theory. 
Most books contain little that is new, even in book form. This is the 
case of 8/3 of the four books in this review. They are well written and 
make good textbooks and pleasant reading but they are not revolu
tionary. The remaining 4/3 books are new in book form and we will 
spend most of the review on these. 

We begin this review with a discussion of Chandrasekharan's 
Introduction to analytic number theory, which is a translation with 
some slight revisions of the author's Einführung in die analytische 
Zahlentheorie (Springer lecture notes series number 29). This book 
presupposes the usual knowledge of functions of a complex variable 
(i.e. Cauchy's theorem) but virtually no knowledge of number theory. 
Indeed, the book begins with the unique factorization theorem and in 
the early chapters moves through (among other things) congruences, 
the law of quadratic reciprocity and several standard arithmetical 
functions. The later chapters include Weyl's theorems on uniform 
distribution, Minkowski's convex body theorem, Dirichlet's theorem 
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on primes in arithmetic progressions and the prime number theorem 
(via the Wiener Ikahara method). 

Several of the theorems in the book are proved by means of convex 
variables and Fourier series (one of the nicest of these being Siegel's 
proof of Minkowski's theorem). Still there is no circle method, no 
functional equations, nor even any Dirichlet series extended past their 
half plane of convergence. Indeed, a Dirichlet series with a complex 
argument is not even mentioned until p. 106 (24 pages before the end 
of the text). In conclusion, I would say that the book is interesting 
and well written but it is definitely not an introduction to analytic 
number theory. 

This brings us to the same au thors introduction to analytic number 
theory, which he has entitled Arithmetic f unctions. About two-thirds 
of the book is devoted to the distribution of primes and the rest is 
split between the partition function and the divisor function. Chapter 
One presents an elementary proof of the prime number theorem. The 
proof chosen follows that of Wirsing, which is capable of producing an 
error term but only the asymptotic result is given here. I t should be 
mentioned that the error term that can be derived from the elemen
tary method has just been greatly improved by Diamond and Steinig 
(Invent. Math. 11 (1970), 199-258). They showed that 

(1) *•(*) = li(%) + 0{x exp[-<;(log ff)1'7""*]} 

where as usual ir(x) denotes the number of primes Sx and li{x) is the 
logarithmic integral of x. 

In Chapter Two we encounter Riemann's zeta function, f(s). I t 
is extended to the entire plane, the number of zeros in the critical 
strip (0<(7<1 where s = cr+it) is given and Hardy's (but not Sel-
berg's) theorem on the number of zeros on the critical line (cr = l /2) 
is given. In Chapter Three we at last get the prime number theorem 
with an error estimate. In fact, we are given Littlewood's improve
ment of the older de la Vallée-Poussin result (0 {x exp [ — c(log x)112]} 
in (1)); it is the latter that is most often given in books (e.g. Daven
port's). In Chapter Four we get Vinogradov's method of trigonometri
cal sums and Chudakov's resulting refinement of Littlewood's 
theorem (but we do not get the best-known present result 
(0{x exp[ — c(log x)8/5~"*]} in (1)) that was later derived by Vino
gradov and Korobov). 

Chapter Five presents Hoheisel's and Ingham's results on the 
differences between consecutive primes (Ingham's result is that if 
x is large, then there is a prime between x and x+^5 / 8 +% in particular 
there are primes between large consecutive cubes), and Chapter Six 
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is devoted to L-functions, their functional equations, and Siegel's 
theorem on their real zeros. Some generalizations of the results of 
earlier chapters to primes in arithmetic progressions are stated but 
not proved. 

Chapter Seven breaks new ground and presents the circle method 
applied to the partition function p(n) culminating with Rademacher's 
infinite series for p(n). The last chapter, Chapter Eight, again changes 
the subject and presents Dirichlet's divisor problem. 

In my opinion, the main value of the book lies in Chapters 1-5 
on the distribution of primes. These chapters certainly provide an 
updating of Ingham's Cambridge Tract, The distribution of prime 
numbers (although much less so when it is combined with Titch-
marsh's book, The theory of the Riemann zeta f unction). Without the 
corresponding work on primes in arithmetic progressions, Siegel's 
theorem seems isolated and, in particular, it is difficult to appreciate 
the ineffective nature of the result. Sieve results are not presented 
even though they are at present producing most of the new results 
in the subject—e.g. Montgomery's improvement of Ingham's the
orem (the exponent 5/8 is replaced by 3/5; this appears in [9]) 
"by a new method". There are notes given in each chapter to further 
references and original sources which should prove useful. 

Multiplicative number theory by Harold Davenport is based upon a 
one-semester course of lectures that I was priviledged to attend. The 
stated aim of the book is to give an account of multiplicative number 
theory with particular attention to the distribution of primes in arith
metic progressions and the recent related large sieve results. There 
are thirty short chapters which more or less follow the historical order 
of development. Chapters 1-6 cover Dirichlet's theorem on primes 
in arithmetic progression (TT(X\ q, a)—»oo as x—><*> where 7r(x; q, a) 
is the number of primes, pSx, such that p^a (mod q) and it is as
sumed that (a, q) = 1). Following Dirichlet, the theorem is first proved 
for prime q and then, with the aid of Dirichlet's class-number formula 
(to show that real L-series at s = 1 are not 0), for general q. 

Chapters 7-22 are devoted to the prime number theorem and its 
generalization to arithmetic progressions. Beginning with Riemann's 
remarkable paper of 1860, we enter the complex plane and find func
tional equations of f and L-functions, product formulae for integral 
functions of order 1, zero free regions for f and L-functions and 
explicit formulae for functions related to ir(x) and ir(x; g, a). Unlike 
the zeta function, there is no proof that L-functions cannot have real 
zeros between 0 and 1 and, in particular, close to 1. Such real zeros 
profoundly affect the results on error terms for primes in arithmetic 
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progressions and class-numbers of quadratic fields. Siegel's theorem 
in Chapter 21 is the best present result on how far such a zero must 
be from s = 1. In this book, one can appreciate the ineffective nature 
of the result and how frustrating it is to know that something goes to 
infinity and not be able to say when it is greater than (for example) 
3. 

Up to this point, only individual arithmetic progressions have been 
considered. In Chapters 23-29, the goal is to develop the large sieve 
so as to consider averages of errors over several progressions in the 
form of a theorem of Bombieri: given A > 0 , there exists 23>0 such 
that 

(2) ]T) m a x m a x I iKyj Q> a) — y/4>(q) I <£ #(iog %)~A 

where 

X = #1/2(log %)-B and \f/(y\ q, a) = ]T) l°g P-
pm&y, pm=5a(mod q) 

Since the best-known results for each progression are of the form 

\p(%\ q, a) = x/4>(q) + 0{x exp[-c(log x)d]} (d < 1), 

where, to make matters worse, the constant in 0 even depends on g, 
we can see what a great improvement (2) is over simply summing the 
known estimates for each term. Indeed, (2) is comparable to what one 
gets by adding the error estimates for each progression deduced by 
assuming the generalized Riemann hypothesis. This is what is be
hind the statement that when one is dealing with averages, results 
formerly derived from Riemann hypotheses may now possibly be 
derived from the large sieve. 

The first two-thirds of the book cover old established results. Al
though many of the results are not the best presently known (for 
example, Arithmetic f unctions goes much deeper into results on 7r(x)), 
they are sufficient for most purposes and are beautifully written. The 
last third of the book on the large sieve is also, with one lapse (and a 
missing x in the statement of Renyi's result on p. 137), well written. 
The lapse occurs on p. 151 in an incorrectly modified form of Theorem 
2 which invalidates the proof of Theorem 4. The necessary modifica
tions appear in Mathematika 14 (1967), 229-232, and need not be 
repeated here. However, one can say that the book was written too 
soon for its last third. The course was given in the first months of 
1966. Interest had just been rekindled in the large sieve and many 
people were working on it. Indeed, 3 or 4 times during the term, 
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seminars and talks on the large sieve were given and each time it was 
simplified. These simplifications are incorporated in the book. Nat
urally enough, however, the simplifications did not cease in 1966 and 
the result is that now the last third of the book is overly complicated. 
Thus the large sieve section of the book is now of interest as a well-
presented intermediate version of the large sieve which stimulated 
many of the later improvements.1 We will have more to say on the 
later improvements in the large sieve after the review of the next 
book. 

Numerous references are given in footnotes but are not collected 
anywhere (except for a list of books on p. viii). Also there is no index. 
In spite of these shortcomings, this book is highly recommended. It 
should serve as an excellent source and reference for a long time to 
come and taken together with Davenport 's earlier work on Waring's 
problem {Analytic methods for Diophantine equations and Diophantine 
inequalities) would make an excellent advanced course in number 
theory. I t would have been interesting to see what the last third of 
the book would look like if it were revised now but due to Professor 
Davenport 's untimely death, this is impossible. He was a good math
ematician, a good lecturer and a good writer. The combination is rare. 

Much of the three previous books consist of material that is well-
known to experts and has often appeared in book form. By contrast, 
much of Sequences by H. Halberstam and K. F. Roth is unique in 
book form. This book has been out for five years and has been re
viewed several times before. However, another review may not be 
amiss since the book is still not well known and, besides, it deserves 
a review of more than its table of contents. Sequences is concerned 
with properties of wide classes of sequences of integers. Occasional 
special sequences occur but mostly in either existence proofs or 
examples of how near the general theorems come to the best results 
for particular sequences. 

The book contains a large amount of material; to indicate how 
much and because some of the results are not well known, I will give 
the actual statements of some of highlights in the book as opposed to 
just names of theorems. Hence some notation is in order. This subject 
abounds with notation ; in spite of valiant efforts by the authors, no
tation is still the greatest obstacle to easily reading the book. For
tunately, we will not need much of it here. All the results given below 
occur in the book, sometimes in other forms. 

1 Professor Halberstam has pointed out to me that Multiplication number theory 
appears in a lecture series, a proper aim of which can be to stimulate further improve
ments rather than give things the ultimate shape. 
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Let Q, and <B denote strictly monotonie increasing sequences of 
nonnegative integers, either finite or infinite. Z0 and Zi are the se
quences of integers 2^0 and §:1, respectively. The numbers A (n) 
and B(n) are the number of positive elements of Q. and (B not exceed
ing n. Chapter One studies densities of sums of sequences. The sum 
of Cfc and (B is the sequence, denoted by <$+(B, made up of all distinct 
numbers of the form a + b with a £ & , 6£(B. By h G,, we mean Ct+ Ct 
+ • • • + d (h — 1 plus signs). Two types of densities are appropriate 
here. The first is the Schnirelmann density of a sequence 

A(n) 
crd = inf 

»>o n 

and the second is the (lower and upper) asymptotic density 

A(n) . A {n) 
dL& = Hm inf ; d& = lim sup ? 

n-+*> n n-*«> fi 

A {n) 
d® = lim • 

n-**> n 

(dj,, and ÔL later, differs from the notation in Sequences due to type
setting restrictions of the American Mathematical Society.) The great 
usefulness of the Schnirelmann density is that o"Ct == 1 if and only if 
a = Zo or Zi. 

The first results of Chapter One are those of Schnirelmann: 

THEOREM. If IE®, 0£(B, then cr(a+(B) èo-ö>+<r(B-(ra<r(B. 
/ƒ OS a, 0£(B anrf aa+<r(B ^ 1, /feeft a + (B = Zo. 

Let (P denote the sequence of 0, 1 and the prime numbers. Schnirel
mann showed by a sieve argument that cr(2(P)>0 and then applied 
this theorem to show that h(? = Z0 for some h. Most of the rest of the 
chapter concerns improvements of this theorem. However, as it 
stands, the first part of the theorem is already best possible. The 
authors mention this as an open question on p. 4, but several people 
have written the authors that the example on p. 6 (used for another 
purpose), a= {l, 10, 11, 12, • • • }, (B= {0, 1, 9, 10, 11, 12, • • • } 
settles the question. 

As the second half of the theorem shows, if 0(E®, 0£(B, then a 
result can sometimes be derived without a <T&(T(& term. To do this in 
general turned out to be surprisingly difficult but was ultimately done 
by Mann (for which he was awarded the Cole prize of the American 
Mathematical Society in 1946): 
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M A N N ' S THEOREM. IfOG &, QE®,then<r(a+<R) à min(l,o-a+<r(B). 

Three years later, Dyson obtained an improvement of Mann's 
Theorem. 

DYSON'S THEOREM. If dj (j=*0y 1, • • • , k) are all sequences con
taining 0 and <B=Ct0+ • • • +&&, then for any n>0 and any m, 

B{m) 
> min 

m 
( 1, mm 2* ) 

This immediately implies that cr((B) â m i n ( l , S i - o ^ ^ i ) - Mann's 
paper included the case & = 1. 

The second half of Chapter One deals with asymptotic analogues 
of the first half. We see from an example that the asymptotic analogue 
of Mann's (or Dyson's) Theorem is false. Set d~ JO, g, 2g, 3g, • • • }. 
Then for any k, (k + l)d= d and hence 

k 
d((k + l ) a ) = (* + l)da (<1) . 

g 
The main result of the second half of the chapter is Kneser's Theorem 
which says that the only counterexamples to the asymptotic analogue 
are "essentially" sequences of congruence classes. 

KNESER'S THEOREM. Let dj O' = 0, • • • , k) be sequences and 

(B= ]F)J-o ®*m SuPPose that 

dL(& < min ( l , J2dLaj) 

Then there exist sequences dj 3 dj ( i à 0, • • • , k) and an integer g such 
that (B'= XXo G ƒ coincides with (B from some point onward and each 
dj is the union of {the nonnegative parts of) congruence classes (mod g). 
Furtherf g may be so chosen that 

k 

d(R = d&' è £ daj - k/g. 

One could not ask for a nicer result than this. The readers interested 
in the theorems of Mann, Dyson and Kneser are referred to Addition 
theorems by H. B. Mann (Interscience Publishers, 1965) which over
laps Chapter One to a great extent. 

Chapter One concerns itself with many other questions of which we 
will mention one here (also to be found in Mann's book). An essential 
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component is a sequence (B such that <7(Cfc+(B) >(rCt for all Ct with 
0 <0-Cfc < 1. A sequence (B is said to be a foms of order h if &(B = Zo. By 
Schnirelmann's theorem, any sequence of positive density containing 
0 is both a basis and an essential component. There are bases of 
density zero (we have already mentioned the sequence of primes 
plus 0 and 1), an example is the sequence Q of squares (including 0) 
which is a basis of order 4. Khintchin proved that it is also an essen
tial component and even 

<r(® + Q) à (ra + 5-10~9(1 - aa)2aa for all tf,. 

However, we have the later amazing result of Erdös: 

THEOREM. If (B is a basis of order h, then for all Œ, 

1 
a(a + (B) ^ o-a H — (l - <ra)*a. 

In particular, (B is an essential component. 

Not only is this result completely general, but it even gives better 
numerical results than a special case previously proved by means 
adapted to the special case. Such results are one of the main goals of 
the theory of sequences but they are very rare. There is one other 
result in Sequences tha t is equally striking ; it occurs in Chapter Two. 

Chapter Two is a relatively short chapter which studies the number 
of representations of integers by hd for fixed h (usually 2). Let Rn((%) 
denote the number of representations of w as a + a ' with a and a1 in 
a. We recall the well-known result of Hardy and Landau that for the 
sequence Q of squares (including 0), 

£ Rn(Q) = — N + oWQog i\01/4) as N-* oo 
n~o 4 

is false. This proved by analytic techniques that depend heavily on 
the sequence Q. Yet in Chapter Two we find the following theorem 
valid for any sequence &. 

ERDÖS-FUCHS THEOREM. The relation 

N 

2 #.(<*) = cN + o(# 1/4(log N)-1'2) asN->oo 

cannot hold for any constant c > 0 . 

This theorem is certainly the highpoint of Chapter Two. We also 
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find in a footnote on p. 106 that somewhere before 1961, W. Jurkat 
has proved the same result with the larger error term o(iV1/4). Un
fortunately, a decade later no proof has yet appeared. There is also 
a multiplicative analogue of this theorem due to Richert which is 
stated (but not proved) on p. 106. Finally, it should be mentioned 
that R. Vaughan has just proved the analogue of the Erdös-Fuchs 
Theorem for representations by hQ instead of 2a . 

Chapter Three deals with probabilistic methods. Much of the 
chapter is devoted to developing the necessary probability theory. 
The theory is actually developed to prove four theorems (all related 
to Chapters One and Two) but it can certainly be applied to other 
problems. I t is a familiar technique in number theory to show that 
something happens by finding an asymptotic formula for the number 
of times it happens. The idea of Chapter Three is to show that certain 
types of sequences exist by showing that the probability of choosing 
such a sequence "at random" is greater than 0. In fact, in each case 
the probability that a random sequence has the desired property turns 
out to be 1. 

The problems under consideration are all of whether or not certain 
types of sequences with given growth rates exist. Probabilistic 
methods work because of the following two theorems. We let 0 
denote the set of all sequences G-ÇZi. 

THEOREM. Let au a2l • • • be real numbers, O^ay^gl. There exists 
a probability measure p onti (/x(0) = 1) such that 

(i) for every natural number n% the set ("event") B{n) = { G,£fi| w £ Ofc} 
is measurable and jj,(B(n)) =an, 

(ii) the events J5(1), J3(2), • • • are independent. 

As an application of the law of large numbers, we then get the 

THEOREM. Suppose that for j^j^ the a, of the last theorem are given 
by 

(logi)c' 
ctj = a — 

j c 

where a > 0 , c ' ^ 0 , 0 < c ^ l . Then with probability 1, a sequence <jfc 
satisfies 

a 

1 — c 

a 
~ ; , . (log n)c'+1, c = 1. 

c + 1 
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Thus with a suitable choice of the ay, almost all sequences in 0 
will have the same prescribed growth rate. 

The most difficult of the chapter's four main theorems is the result 
of Erdös and Renyi: 

THEOREM. Let rn(Q) denote the number of representations of n as 
a+a' with a and af in a, a<a'. Further, let the CLJ of the last two the
orems be given by aj — J j~ 1 / 2 , and let X = 7r/8. Then with probability 1, 
a sequence $,= {#i, a2, • • •} satisfies the following f our conditions: 

(i) a^j2 as j—» oo. 
(ii) For all k à 0, the sequence (B* consisting of those n with rn(Q) = k 

has density d&k — We^/kl. 
(iü) 2 X i r»(a)~XiV as N~* oo. 

,. N ,. '»(a) l og l o g n
 4 

(iv) lim sup = 1. 
nn.00 l o g ft 

The sequence of squares belongs to the complementary set of 
measure zero ((ii) and (iv) fail). Part (i) follows from the previous 
theorem but the other three parts are more difficult. The reason is 
that, unlike what happens in the three other main theorems of the 
chapter, the events that occur here are not independent. For example, 
one finds that 

/*{ft| r„(G) == 0} = I I (1 — <xkan-.k) ~ e~x asn~>oo. 
l:SA<n/2 

If for a function ƒ defined on fi, we let the first moment of ƒ be 

M(f)= f f du, 

then Bo(N) (the counting number of the sequence (B0 in (ii)) is a 
function on 0 and its moment satisfies 

JV 

lim MiN^BoiN)) = lim N"1 Y,4a\ f»(a) = °} = *~x-
N-* » J V - > oo nsaxi 

The connection between this and (ii) (with k = 0) is clear. Often one 
can go from this directly to (ii) by means of the law of large numbers. 
Here, however, the events €n= {fit|rn(Ct) = 0 } are not independent 
and, hence, the law of large numbers does not apply. 

The same nonindependence problem arises in (iii) and (iv) and to 
deal with this problem, one has to derive "quasi-independence" rela
tions. These say in each case that the events are close enough to being 
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independent that one can barely get the desired results without such 
things as the law of large numbers. §15 of Chapter Three is devoted 
to quasi-independence. I t is essentially new material that has never 
before been published (and which delayed the completion of the book 
by several months). The reason for this is that the authors found the 
original proof of Erdös-Renyi incomplete in that most of the quasi-
independence relations were not given and the one that was given was 
unintelligible. The authors later requested a proof of a special case of 
that relation and Professor Renyi very kindly supplied it. 

Chapter Four covers sieves from small to medium large. I t has a 
beautiful discussion of how present sieves are generalizations of the 
old sieve of Eratosthenes. The sieves covered are the sieves of Brun 
and Selberg and the large sieves of Linnik and Renyi. (The book was 
written before the recent wave of improvements in the large sieve 
and, indeed, may even have aided it since it was Roth who, after 
just writing this book, made the first basic improvement in the large 
sieve.) We will be discussing sieves immediately after the review of 
this book and so will say no more about them here. I t should be noted, 
however, that Chapter Four itself is quite different from the other 
chapters both in material and lack of applications. Although quite 
interesting, it somehow seems out of place in relation to the rest of 
the book. 

Chapter Five covers two related areas. A sequence (& of positive 
integers is primitive if no element of d divides another element of Cfc. 
Clearly, a primitive sequence cannot be too thick. The proper measure 
of this is still another type of density, the logarithmic density: 

1 ^ 1 . 1 ^ 1 
ÔL® — lim inf 2Lr — ' d& = lim sup 2u — ' 

n-»oo log n aiSn di « - « log U a^n &i 

ô& = lim — 2Li — ' 
n-*«, log n ai&n Ui 

where (% — {#i, #2, • • • }• The logarithmic density is more general 
than the asymptotic density; if Jö, exists, then Set exists and equals 
the same thing. 

THEOREM. If G, is primitive, then oa = 0. 

This might lead one to hope that d6L = 0 but Besicovitch showed dd 
does not always exist. 

THEOREM. If a is primitive, then dL<3, = 0, J c t ^ f {a footnote gives a 
result not proved in the text which implies d& < | ) but for any e > 0, 
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there exist primitive sequences with cl(l>% — e. 

We also have a surprising contrast to the result 8(1 = 0 if & is primi
tive : 

THEOREM (DAVENPORT-ERDÖS). If ôct>0, then <$ contains an 
infinite subsequence {aif} such that a^a^for all j . 

A closely related topic is the set of multiples of a given sequence. 
Let (B = (B((3fc) be the sequence of all positive multiples of elements of 
ft. Let (Bw be the set of multiples of the first m elements of (I. Thus 
<BW is the union of congruence classes and hence d(Bm exists. Since 
further, (Bm+i3(Bw, we see that 

b = Urn d(&m 

exists. We therefore hope that d(& exists and equals b but as usual, we 
are disappointed. We do have the 

THEOREM. ô(B(0t) =dL(&(G) = b (and hence if d(B(a) exists it equals 
^)- If SotGö #rx converges then d(&(&) exists. 

However, we have the result of Besicovitch: 

THEOREM. Given e>0 , there exists an infinite sequence Ofc with 
d(&(a)^§anddL(&(a) ^€ . 

In fact, the sequence & that Besicovitch constructs leads to an 
example of a primitive sequence <2' with dd'^Hl—e) by simply 
deleting from G- all elements that are multiples of other elements of 
($. Finally we have the interesting 

THEOREM (ERDÖS). If, for some c, A(n)<cn/log nfor n>l, then 
^(B(a) exists. However, if\f/(n) is a monotonically increasing function of 
n tending to oo, then there exists a sequence d with A (n) = 0(mp(n)/\og n) 
such that d(&(&) does not exist. 

So much for the actual contents of Sequences. We have actually 
only scratched the surface but by now the reader should have an idea 
of the contents and the wealth of material involved. The book is 
essentially self-contained and, in fact, the five chapters may be read 
in any order. Although this is the most "elementary" of the four books 
reviewed here, nevertheless we still find occasional Fourier series, 
Parseval's formula, e to complex arguments and gamma functions. 
And it was also (for me) the hardest of these four books to read. One 
reason is that many more routine algebraic steps are left to the reader. 
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But the main problem is notation. Notation comes and notation 
goes; the same symbol will stand for different things in different places 
(particularly in different chapters) and the same thing will be written 
in different ways in different places. These notations are clearly 
defined each time and, of course, in the different chapters, with 
different viewpoints it is excusable to change notations. Also, the 
majority of notations arise in the course of proofs and are kept for 
only one or two sections and then discarded so that not too much 
notation must be permanently kept in mind. Still there are occasional 
proofs which resurrect (with references—sometimes without the 
page number—rather than definitions) long forgotten notation which 
force one to reread several pages before proceeding. At this point, it 
would be nice to be able to look things up in the index but, unfor
tunately, in the tradition of other Oxford University Press books, 
there is no index. This is another English tradition that could well be 
abandoned. 

Finally, especially considering the complexity of the notation, the 
book has surprisingly few errors, be they printing mistakes or others. 
We find on p. 13 an a(a — l) that should be a( l— a) , and on p. 139 
(with a similar thing on p. 140) a statement in Theorem 10 that 
23 gAx) < °° which seems a strange way to say without explanation 
that 52 £j(x) ( a series of positive and negative terms) converges. 
There is also a curious statement on p. 181 that a sum of N positive 
terms is <&N with a footnote saying that a previous lemma shows the 
constant in <& to be absolute; whereas in actual fact, each term is 
obviously g 1 and the <3CiV can be replaced by ^ N. Clearly none of 
these are really serious and the fact that I had to give these examples 
serve to show how carefully the authors wrote and proof-read their 
book. 

This text should be a standard reference in this area for years to 
come; it has compiled an amazing amount of material, most of wr ich 
is only in the research journals. There is also a large amount of mate
rial on sequences not covered (e.g. partitions, arithmetic progres
sions) for which the authors promised a second volume. Unfortunately 
(but not surprisingly, considering the work involved), the second vol
ume appears to be even further in the future now than it did when 
Volume One was completed. 

The rest of this review is devoted to sieves and has the main pur
pose of filling in the gap between 1966 and the present. The idea of 
sieving occurs first in the ancient "sieve of Eratosthenes." The idea 
is that to find all the primes p with -\/x<p^xt it is only necessary 
to "sieve out" from the set of integers ^x all multiples of primes 
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g y/x. The number of such primes is (P = H ^ v * £)» 

i + **) - -(v*) = ^ ^ r + ZMW ([41 - 4) 
d\p d d\p \LdJ a/ 

as is easily checked by setting [x/d] = ^mzx^im 1 and interchanging 
the order of summation. The second sum is the "error term" but due 
to the large (compared to x) number of divisors of P , a decent esti
mate of the error term is unlikely to be obtained. A similar formula 
holds if we generalize the problem to sieving the elements a^x of a 
given sequence & by primes p from a certain set (P of primes. Namely 
(P = Ilpe6>P), 

(3) £ 1 = * Z ^~ + Z MM*) 
fla^;aGa;(a,P)=l d\PJ\d) d\P 

where x/f(d)+Rd(x) — Z«**;«ea;<*ia 1 and f(d) is a function chosen so 
that Rd(x) is not "too large." The basic idea of the upper bound sieves 
of Brun and Selberg is to replace fi(d) by a function \(d) such that 
(i) the right side of (3) is increased and (ii) the number of d\P with 
\(d)^0 should be "not too large." These simple modifications lead 
to beautiful nontrivial results. So far, we have been "sieving out" 
numbers # = 0 (mod p). We might wish to sieve out numbers from 
other residue classes, say all numbers a in k(p) given residue classes 
mod p. The sieves of Brun and Selberg give good results only when 
k(p) is very much smaller than p. The "large sieves" give results for 
larger values of k(p). The comments in this paragraph are a much 
condensed version of the introductory section of Chapter Four of 
Sequences, which I again recommend to any reader who wishes to 
know what sieves are and what they do. As far as the nonlarge sieves 
go, I recommend the lectures of Selberg [14] and Richert [12], 
Richert's paper [ l l ] and the forthcoming book on sieves by Hal-
berstam and Richert [ô]. 

The large sieve is one of the most popular topics in analytic number 
theory at the moment. For instance, one can show [s] (details to 
appear in [ó]) by means of it that every sufficiently large even number 
is the sum of a prime and a number which is a product of at most three 
primes; this is the closest approach to Goldbach's conjecture yet. As 
stated earlier, Davenport 's book (with the correction given in 
Mathematika 14 (1967), 229-232) gives the large sieve and Bombieri's 
application of it with the simplifications up to the middle of 1966 in
corporated. Many further simplifications and new results have been 
obtained since then. I am indebted to H. L. Montgomery for the 
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following references with which I end this review. As to the contents 
of Davenport 's book, we must mention the simplifications by Galleg-
her in both the sieve [3] and Bombieri's theorem [4]. Also, the 
average result of Chapter 29 has been changed by Montgomery [lO] 
from an inequality to an asymptotic equality and in the process the 
use of the large sieve was eliminated. Bombieri and Davenport [2] 
have achieved formulations of the large sieve which cannot be essen
tially sharpened. Also, pertinent to Bombieri's theorem are two 
papers of Montgomery [8], [9] (in the latter, we find the result that 
for large x, there is a prime between x and x+xZIb+€). More recently, 
Bombieri [l ] has reformulated the large sieve in terms of an improved 
Bessel's inequality, an idea that had been used earlier by Renyi in 
more complicated form (see Sequences, p. 233, Lemma 6). The large 
sieve has been extended to algebraic number fields [7], [13], [15] 
(Wilson follows the paper of Gallagher [4] and generalizes Bombieri's 
theorem to algebraic number fields). 

H. M. STARK 
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