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I t is well known that in any gathering of six people, there are 
three people who are mutual acquaintances or three people who are 
mutual strangers. This statement has the graph-theoretic formulation 
that for any graph G of order 6, either G or its complement G has a 
triangle. Furthermore, this statement is not true in general if "six" is 
replaced by a smaller integer. 

The Ramsey number r{m,ri) may be considered a generalization of 
the above statement. For integers m, w ^ 2 , the number r(ni, n) is 
defined as the least integer p such that for any graph G of order p, 
either G contains the complete subgraph Km of order m or G contains 
Kn. Hence, r(3, 3) = 6. I t is a trivial observation that r{m,n)— r(ny m), 
and r(2, n)^=n for all n^2. Despite the fact that a great deal of re­
search has been done on Ramsey numbers, only six values r(m, n) 
have been determined for w, n^3 (see [l ]) ; namely, r(m, n) is known 
(for m, n^3) only when (m, n) = (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), 
(4, 4). Thus, no general formula for r{m, n) has been determined for a 
fixed w ^ 3 and arbitrary n\ indeed, no such formula has even been 
conjectured. 

There is a generalization of the problem of the three acquaintances 
and three strangers which is different from that which leads to the 
Ramsey numbers but which is just as natural. If we denote an w-cycle 
by Cni then the above problem may be stated as: Given a graph G of 
order 6, either G or G contains Cz. This suggests the following gen­
eralization. For m,w^3 , the number c(m, n) is defined as the least 
integer p such that for any graph G of order p, either G contains Cm 

or G contains Cn. Of course, c(3, 3) = 6 . We wish now to announce 
formulas for c(3, w), c(4, n), and c(5, n) for all w ^ 3 . 

THEOREM 1. If n^3, then 

c(3, n) = 6 if n = 3, 
= In - 1 if n è 4. 
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OUTLINE OF PROOF. We have already noted that c(3, 3) =6 . That 
c(3, n) =2w —1 for w ^ 4 is verified by employing induction on n. The 
number c(3, 4) = 7 is established individually. Assume c(3, n) = 2» —1 
for some fixed # ^ 4 and consider the number c(3, n + l). (For w , w ^ l , 
denote by K{m, n) the complete bipartite graph of order tn-\-n whose 
vertex set may be partitioned as F iUF 2 , where | Vi\ = m a n d | F2 | =n 
and where e = uv is an edge if and only if uÇ: V% and vÇz Fy, i^j. If 
Gi and G2 are connected graphs, then GiUG2 represents the discon­
nected graph with components G\ and G2.) If H~K(n, n) so that 
"H — KrSJKni then i f has no 3-cycle and TI has no (» + l)-cycle; thus, 
c(3, n + l ) ^ 2 n + l . 

Let G be a graph of order 2n+l> and assume G has no 3-cycle. Since 
c(3, n)=2n — 1, G contains an w-cycle Ciu\y «2, • • • , «n, #1. Denote 
the remaining vertices of G (and hence G) by t/i, v2, • • • , un+i. If any 
z;» is adjacent in G to two consecutive vertices of C, then G contains 
an (w+l)-cycle, completing the proof. Suppose, then, that no such Vi 
exists. We consider two cases. 

Case 1. Assume there exist two alternate vertices of C, say Uj and 
Uj+2, which are respectively joined in G to two distinct Vi. 

Case 2. Assume no two alternate vertices of C are respectively 
joined in G to distinct vertices Vi. 

In each case, it can be shown that G contains an (»+l)-cycle, 
thereby proving that c(3, w+1) = 2 » + l. 

In the case of the numbers c(4, n), there are two special cases to be 
considered, namely c(4, 4) and c(4, 5). 

THEOREM 2. If n^4, then 

c(4, n) = 6 if n = 4, 

= 7 if n *= 5, 

= w + 1 if n ^ 6. 

OUTLINE OF PROOF. The numbers c(4, 4) and c(4, 5) are treated 
separately. To prove c(4, n) =n+l for w ^ 6 , we use induction on n, 
with c(4, 6) = 7 verified first. We make the standard induction 
hypothesis, and consider c(4, n+1) for some n^6. For H=K(1, n) 
and TI = ki\JKny we observe that ff has no cycles and Tl no (w+1)-
cycles so that c(4, w + l ) ^ w + 2 . 

Let G be a graph of order n + 2 having no 4-cycles. Because 
c(4, n)=n + lt G has an w-cycle C. Let Vi and t>2 be the two vertices of 
G not on C. We may assume that neither v\ nor v2 is joined in G to two 
consecutive vertices of C so that each of V\ and t/2 is joined in G to at 
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least {\n} vertices of C. (For a real number x> {x} is the least integer 
not less than x.) 

livi and v2 are mutually adjacent in G to two or more vertices of C, 
then G contains a 4-cycle, which produces a contradiction. We then 
consider two cases depending on whether v\ and v2 are mutually ad­
jacent to no vertices or one vertex of C. In either case, one can estab­
lish the existence of an (#+l)-cycle in G, concluding the proof. 

The formula for c(5, n), n^5, presents no exceptional cases. 

THEOREM 3. If w è 5, then 

c(S, n) = In — 1 . 

OUTLINE OF PROOF. Again we employ mathematical induction with 
c(5f 5) = 9 handled separately. Assume c(5, n) =2n — 1 for some n^5, 
and consider c(5, n+1). The graph H — K(n, n) has no 5-cycle and its 
complement H~Kn\JKn has no (w + l)-cycle, so that c(5, n+1) 
à 2n+l. Let G be a graph of order 2n+l possessing no 5-cycle. 
Since c(5, n)=2n — 1, we have the existence of an w-cycle Clui, 
u2, • • • , un, U\ in G. If any of the remaining vertices vi, v2, • • • , vn, 
and Z/W-H is adjacent in G to two consecutive vertices of C, then G has 
an (#+1)-cycle, so we assume this is not the case. If the vertices Vi 
induce Kn+i in G, then G has an (w + l)-cycle. Thus, we assume some 
two distinct Vi, say vx and v2, are adjacent in G. Three cases are then 
treated according to the manner in which vi and v2 are joined to the 
vertices of C. 

Case 1. Assume there is a vertex Vk (k?*l, 2) such that vi and Vh are 
joined in G to a vertex Ui on C, and v2 and % are joined in G to a vertex 
Uj on C. Here a 5-cycle in G is produced regardless of whether m and 
Uj are distinct. (If n is odd, Case 1 necessarily applies. Hence, n is 
even in the subsequent cases.) 

Case 2. Assume Case 1 does not hold and there exists some vertex 
Vk $5*1, 2) which is adjacent in G to no vertex of C which is joined in 
G to Vi or v2. In this case, the existence of an (#+1)-cycle in G is 
established. 

Case 3. Assume that Case 1 and Case 2 do not hold. This implies 
that each vk, k^l, 2, has the properties that whenever V\Ui and vkUi 
are in G, then v2Ui is in G, and whenever v2u3- and VkUj are in G, then 
ViUj is in G. Here we show that either ViVk or v2vk is an edge of G, for 
each fee3, and that we are under the conditions of Case 2, where the 
roles of fli and v2 are played by either v% and vk or by v2 and Vk. Hence, 
an (n + 1) -cycle of G exists here also and the proof is complete. 
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Further, the number c(6, 6) can be shown to have the value 8. The 
argument we have constructed is quite lengthy and will be published 
elsewhere, together with the full details of the proofs of Theorems 1-3. 
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