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In this note, we shall present a method to establish condition (C) 
by Palais and Smale [7] (Theorem 1) and announce a particular 
result (Theorem 2), which e.g. applies immediately to obtain the 
existence of minimal geodesies on Sobolev manifolds (Theorem 3). 
The method is based on the notion of weak submanifolds, which 
allows the introduction of some classical concepts from functional 
analysis in infinite-dimensional intrinsic differential geometry. 

We shall call a Banach manifold M a weak submanifold of another 
Banach manifold Mo, iff for any point Xo in the closure of M in Mo 
there is an open neighbourhood Uo of x0 in M o together with a chart 
<£o' UQ—><J)O(UO)(ZEO for Mo and a Banach space E, which is a linear 
subspace of E0 with a continuous inclusion EQEo, such that the 
restriction of <j>o to U=MC\U* is a chart <£: U—>(j>(U) =4>o(U0)r\E 
for M. We call such a chart for M a weak chart (at x0). 

Now let My Mo be Banach manifolds with M a weak submanifold 
of Mo. We shall call a function ƒ on M weakly proper with respect to 
Mo, iff any subset A of M, such that ƒ is bounded on A, is relatively 
compact in Mo, Moreover, we shall call ƒ locally bounding with re­
spect to Mo, iff for any point x0 in M0 and constant K, there is a 
weak chart for M at x0 and a constant B, such that ||#|| <B for all 
x in 4>{U) with f(x)<K. Finally, we shall call a C1 function ƒ on M 
locally coercive with respect to Mo, iff for any point x0 in M0 and 
constant By there is a weak chart for M at x0 and constants \ > 0 and 
C, such that 

(1) (Df(y) - Df(x))(y - x) * \\\y - x\\* - C\\y - *||'0 

holds for all x, y in <j>(U) with \\x\\ <B and ||y|| <B, or equivalently in 
case ƒ is of class C2, such that 
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(2) Z>V(*)tt, Ö ^ x|U||a - C||€||o 

holds for all x in <j>(U) with ||x|| <B and all £ in E. Here || ||, || ||0 

denote the norms in E, E0. 

THEOREM 1. Let M be a C2 Banach manifold with a Finsler structure 
and let f be a Cl f unction on M. Suppose there exists a C2 Banach mani­
fold Mo containing M as a weak submanifold, such that ƒ is locally 
coercive, locally bounding and weakly proper with respect to Mo. Then 
ƒ satisfies condition (C). 

PROOF. Let xn be a sequence in M, such that ƒ (xn) is bounded and 
|p/(xn) | | converges to zero. Since ƒ is weakly proper w.r. to Mo, we can 
choose a subsequence of xn converging in Mo and then choose a weak 
chart at the limit, such that the subsequence is norm bounded and 
satisfies inequality (1). Then the subsequence obviously converges 
in M. 

REMARKS. Inequality (1) (and (2)) applies mainly in the case M 
is a Hubert manifold. More generally, the theorem remains true, if 
inequality (1) is replaced by 

(10 (Df(y) - Df(x))(y - x) ^ <K\\y ~ *||) ~ iKll? ~ *l|o), 

where 0 is a strictly monotone function on R+ with lim^o <f>(t)=0 
and yp is a function on R+ with limf_*0 *K0 ^ 0. This inequality is 
similar to a condition used by Palais [6, Theorem 19.21] to establish 
condition (C) for a function on an imbedded Sobolev manifold. Also 
in the works of Palais [5], Smale [9], Saber [8], Uhlenbeck [lO] and 
the author [3], [4], where condition (C) is established for concrete 
variation integrals, we find the properties introduced here. In [4] 
there is constructed a large class of variation integrals (energy 
integrals), which are locally coercive and locally bounding but 
possibly not weakly proper (this can also be observed in [lO]). Thus 
it seems to be preferable to separate these properties in different 
concepts, although they are strongly related. However, these con­
cepts should of course be considered in the state of development. 

Let N be a compact and connected C00 Riemannian manifold of 
dimension n and possibly with boundary. Let ir:W—>N be a finite 
dimensional C00 fibre bundle with a RMC structure [4], such that 
the fibres of W are complete Riemannian manifolds without bound­
ary. Suppose moreover that the fibres of W are compact, if the 
boundary of N is empty. Hk(W), with an integer k>n/2, denotes 
the Sobolev manifold of sections of the Sobolev class Hk = L2

k in W 
[6], [2], [4]. If ƒ is a section in W, then TfW=f*T2W denotes the 
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pullback by ƒ of the vertical tangent bundle T2W->W. Hk(TfW) is 
then the tangent space of Hk(W) a t the point ƒ in Hk(W). We give 
IP(W) the Riemannian structure induced by the RMC structure 
of W and then Hk(W) is a C°° complete Riemannian manifold [4]. 
The inner product of two tangent vectors £, rj in Hk(TfW) is given by 

where V*fGf?*"*(Z,<(riVr, 7>P$0) is the covariant derivative of J of 
order i [2], [4]. We have on fl*(IF) an integrable distribution, which 
assigns to each fEHk(W) the closed subspace H%(TfW) of Hk(TfW) 
(the closure of the linear subspace of sections in Hk(TfW) with com­
pact support in the interior of N). We denote by Hk(W)h the maximal 
connected integral manifold of this distribution, which contains h. 
All sections in Hk{W)n agree with h on the boundary of N and take 
the same Dirichlet Hk boundary values as h. Hk{W)n is then a closed 
C00 Riemannian submanifold of Hk(W). 

Let 1 = [0, l ] be the unit interval, h a C00 section in W and 
u:I-»Hk(W)h a C00 curve. Then if1 (J, Hk(W)h)u is a C°° Riemannian 
manifold and consists of all H1 curves all—>Hk(W)h homotopic with 
u and with fixed endpoints. We have a C00 function E on H1(I1 Hk(W)h)u, 
the so-called energy function, defined by 

J5(«) = * f ||da(0||îd/. 
*̂  o 

The critical points of E are exactly the geodesies in Hk(W)h con­
necting u(Q) with w(l) and homotopic with u. 

THEOREM 2. The energy function E on Hl(I, Hk(W)h)u satisfies 
condition (C). 

THEOREM 3. Any two points in the Riemannian manifold Hk(W)h 
can be joined by a geodesic of minimal length. 

In [ l ] Dowling proves a result analogous to Theorem 2, but we 
have found his treatment of the intrinsic metrics incomplete. In the 
proof of Lemma 5.4, he forgets that the map Vr

x8t is nonlinear and 
in the proof of Lemma 5.5 it is not possible to finish "by a simple 
induction. " 

We shall now describe briefly how Theorem 1 can be applied to 
prove Theorem 2. We use the following properties of the Sobolev 
manifolds : 

1. Hk(W)h is a weak submanifold of C°(W)h and H^I, Hk(W)h)u is 
a weak submanifold of C°(J, C°(W)h)u-

2. Thereisaconstant^>0,suchthat | |^ | |coâc | |ê | |A , for£efl*(Z>W0, 
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fEH*(W) [4]. 
3. The energy function Ek(f) =§ | |v / | | t - i on Hk(W)h is a C00 func­

tion, which is weakly proper, locally bounding and locally coercive 
w.r. to C°(W)h, in particular Ek satisfies condition (C) [4]. 

4. Ek is bounded on bounded subsets of Hk(W)h. 
5. The imbedding Hk(W)h<ZC°(W)h is compact, i.e. bounded sub­

sets of Hk(W)h are relatively compact in C°(W)h [4]. 
For any a in Hl{I, Hk(W)h)u we have the following estimate on the 

distance dk in Hk(W)h: 

dk(a(t), a(s)) ^ I f - | |da(/) | |* dt I S ( \t - * | )1/*(2JS(a))1/«. 

Thus if E is bounded on a subset 4̂ of ^ ( J , Hk(W)h)Ul then 
^4(7) = { a ( 0 | a G - 4 , *£=/} is a bounded subset of Hk(W)h and thus 
relatively compact subset of C°(W)h (by 5). Moreover, A is an equi-
continuous subset of C°(I, Hk(W)h)u and also of C°(I, C°(W)h)u 

(by 2). Then A is a relatively compact subset of C°(J, C°(W0/0t* a s a 
consequence of the Ascoli-Arzela Theorem, or E is weakly proper 
w.r. to C°(J, C°(W)h)u. Now Efc is bounded on A (I) (by 4), then using 
that Ek is locally bounding w.r. to C°(W)h (by 3) and a local formula 
for E, it is not difficult to show that E is locally bounding w.r. to 
C°(J, C°(W)h)u- I t is also not difficult to show that E is locally coercive 
w.r. to C°(7, C°(W)h)u by local estimates. 
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