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1. Introduction. In this note, we announce results on the structure 
of the unoriented PL cobordism ring, 9l*L, and the Z2-characteristic 
classes for PL bundles, H*(BPL). All homology and cohomology is 
with Z2-coefficients, unless otherwise indicated. 

There is a sequence of ü-space fibrations 

Û(G/PL) -> PL -> G -> G/PL -> BPL -> BG. 

The Z2-cohomology of an iJ-space is a Hopf algebra over the Steenrod 
algebra. R. J. Milgram [5] has determined H*(G) and H*(BG), and 
D. Sullivan [7] has determined J7*(G/PL) and H*(Q(G/PL)). Our 
main results, determining the Hopf algebra structure of H*(PL) and 
H*(BPL), follow from spectral sequence arguments, once we have 
determined the map H*(G/PL)-*H*(G). 

W. Browder, A. Liulevicius, and F. P. Peterson [ l ] have shown 
that there is an isomorphism of rings 9l*L~3l^®H*(BPL)//H*(BO), 
where 91* is the unoriented, differentiate cobordism ring determined 
by Thorn. Thus our homology computations are sufficient to deter­
mine 9d*L. 

Our methods also determine if* (TOP) and H*(BTOP) as Hopf 
algebras. In fact, these computations are easier than the PL compu­
tations. The Kirby-Siebenmann topological transversality theorem 
implies that 9lïOP~7r*(ikTTOP) = Vl%®H*(BTOP)//H*(B0) in di­
mensions 7^4. 

2. Surgery obstructions. We first recall some results on G/PL (and 
G/TOP) due essentially to Sullivan [7] (and R. Kirby and L. 
Siebenmann). 

The homotopy groups are given by wn(G/PL) =7rn(G/TOP) = Pn, 
where Pn = Z, 0, Z2, 0 as ^ = 0, 1, 2, 3 (mod 4), respectively. However, 
the natural map G/PL—>G/TOP has as fibre an Eilenberg-Mac Lane 
space K(Z2t 3). 

There is a map 
G / T O P - ^ n ^ i K(Pn, n)=K(P*) which induces 

an isomorphism of Hopf algebras over the Steenrod algebra H*(K(P*)) 
C^H* (G/TOP). Let k2nGH2n (G/TOP) denote the image of the funda-
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mental class i2n<EH*(K(P*)), Then the map i*:H*(G/TOP)->H*(G) 
is completely determined, once the elements i*(k2n)ÇzH2n(G) have 
been computed, n*zl. 

REMARK 2.1. Denote also by k2n the image of k2n in H2n(G/PL). 
Since G/PL has one nonzero fe-invariant, SLI^H6(K(Z2I 2), Z), where 
5 is the integral Bockstein, it follows that kA — k2

2EHA(G/PL). How­
ever, since h2

2 is divisible by 2, H*(G/PL) and H*(G/TOP) are ab­
stractly isomorphic as algebras over the Steenrod algebra. Thus 
ff*(G/PL) has generators {k2n, n^2t k'é] where Jkie#4(G/PL) is a 
new generator. The Hopf algebra structure of H* (G/PL) is deter­
mined by the coprod uct A (&£) = £4 ® 1 + k2 ® &2 + 1 ® &4. 

Let ilfw be a closed manifold, ra^O (mod 2), and let 0 : ikfm-*G/PL 
be a map. Then there is a Kervaire surgery obstruction SK(MW, <fi) £ Z 2 

and a formula for £# which uniquely characterizes the class K&-2 

= Snfcl &4n~2 [ô], [7]. 

2.2 **(Jf ~, 0) = (V\M) -<t>*(K^2), M > G Z2 

where F2(Jkf) is the square of the total Wu class V(M) = J ^ o Vi(M) 
EH*(M). 

Let lfw be a Z2-manifold (that is, wi(M) is the reduction of an 
integral class zx(M) EH1 (M, Z)),m = 0 (mod 4), and let 0 : ikfw->G/PL 
be a map. Then there is an index surgery obstruction si(Mm, $ ) £ Z 2 

and a formula for sj which uniquely characterizes the class i£4* 

si(Mm, <t>) = <F2(M) -0*(^4*) 

+ Sq^Œ, V2i(M)Sq1V2i(M))^(K^2))} [M]) G Z2. 

3. The homology of SG. A sequence I=(ii, • • • , i») of positive 
integers is allowable if 2iy+1^iy, all j . We write kl={kii1 • • • , &i„), 
d(I)= X}*-i*V» a n d e CO =4— (]C?«2^)- Let 5(w) denote the set of 
allowable sequences ƒ of length ^ with #(ƒ) ^ 0. 

If 4̂ is a graded Hopf algebra over Z2, let ^4* denote the dual Hopf 
algebra, and let A(^4)C^4 denote the Hopf subalgebra generated by 
squares. 

If X is a graded set, introduce Hopf algebras P(X), the polynomial 
algebra on primitive generators X, T(X) = P(X)*, the divided power 
algebra on X, and E(X), the exterior algebra on primitive generators 
X. Then E(X)~E(X)*. The graded set s(X) will be the set X with 
elements shifted up one dimension. 

The space SG is studied in [4] and [5] by identifying it with the 
degree one component of (XS° == lim»-^ (OnSn). If x, yÇzH*(SG), de-
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note by x-y(EzH*(SG) their composition product, and denote by 
x~yE:H*(SG) the loop product x * y * [ — 1 ], computed in H*(QS°). 
Here [q] denotes the homology class of a point in the degree a compo­
nent of QS°. Let Q1 = <2*i o • • • o Q*» be the Dyer-Lashof operation. If 
I&S(n), let er = <27[l] * [l-2n]&HdiI)(SG). The notation is that of 
[4]. The following two paragraphs and Lemma 3.1 are reformulations 
of theorems of [5]. 

There is an isomorphism of Hopf algebras H*(SG)^H*(SO) ®A 
®(®n^Cn) where A=Z2[eii,i)\i^l]<mdCn = Z2[eI\l<ES(n),e(I)^l] 
are Hopf subalgebras of H*(SG). As an algebra, H*(SO)csiE(ei\ i â 1). 
The coproduct is A(en) = 2 **+ƒ-* £»®ey. Further, e t=e*([i?P(i)]), 
where 0:i?P(00)—»SO is a certain map. 

There is an isomorphism of Hopf algebras H*(BG) = H*(BO) ®BA 
®BC2®(®n*zBCn), where BA =E(s(e{i,i)\i^l))t £C»=P(5(er | I 
eS(n), e(I)^l)), and £C r i =P(s (e r | JG5(» ) , *C0è2) ) . 

LEMMA 3.1. /ƒ x&Hn(SG), then x=\(x)en+Ylyi 'y" + 2 2 /—*"» 
where \(x) = 0 or 1 awd 3;/, y", 2 / , z"ÇzH*{SG) are elements of positive 
dimensions. In particular, the classes e» generate H*(SG) if both products 
• and -Î- are used. 

Next, we need a geometric interpretation of the loop product in 
H*(SG). Let x, y£H*(SG) be represented by manifolds a:Ma-*SG 
and j8 : JSP-^SG. Then a * [ — 1 ] : ikf-^QS0 corresponds to a map 
Ma X Sq—*Sq of degree zero on £ X Sq, p £ Af. By transverse regularity, 
this, in turn, corresponds to a degree zero map ƒ likf'—»Af covered by 
a bundle map }\VM'-*VM> Similarly, let fi\Nh-^>SG correspond to a 
degree zero map g:N'—>N, covered by a bundle map ^WN'-^VN-

LEMMA 3.2. The element x—y^Ha+h(SG) is represented by a map 
a—PlMXN—tSG, which corresponds to the degree one normal map 

MXN + M'XN + MXN' --+M X N, 

covered by the bundle map 

î + (/xî) + (îxi), 
where + indicates disjoint union of manifolds. 

4. The map H*(G/PL) ->H*(SG). 

THEOREM 4.1. Let a:Ma-±SG and (i:Nb->SG be maps, a+b = 2n. 
Then 
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sK(M XN,a — (3)- sK(M XN,a-p) 

= {(V(M X N)-a*a(V) ® l)n-(V(M XN)-1® P*<r(V))n, [M X N]) 

= ( V*(M X N) • ( Z) E «M»<) ® /SVwy) ) , [M X tf ] 
\ V a 2 t+y—2r; {,y^ 2 / -

where cr(wi)^Hi~1(SG) is the suspension of WiÇ^H^BSG). 

THEOREM 4.2. Let a:Ma-+SG and ^:Nb-^SG be maps, a+b = 4n, 
where M" and Nb are Z^-manifolds. Then 

si(MXN,a — 0)- si(M XN,a-0) 

= (Sq^iViM X N)-a*c(V) ® \)2n^)-Sq\{V{M X N) 

•1 <g> P*<T(V))2„-I), [M X N]) 

= (v*(M X i\0 ( Z ' M * ® <r(v>2)A 

+ Sq1 (( Z V2i(M)SqWu(M)) ( X Z «M*»<) ® f3*<r(™j))), 
W iZO / \ râ2 t+y=2r;t,yè2 / / 

[Mxiv]\ez2. 

Theorem 4.1 is proved using Lemma 3.2, and the result of E. H. 
Brown, Jr., that the Kervaire surgery obstruction of a degree one 
normal map may be expressed as a difference of two Arf invariants 
[2]. To compute this difference in the situation of Lemma 3.2, an 
additional formula of Brown is needed, which expresses how the Arf 
invariant of a manifold M2n depends on the choice of a degree one map 
Sq+2n—^T(vq

M). The second equality in Theorem 4.1 is a lengthy com­
putation with Stief el-Whitney numbers. It is first verified for the 
products ea—eb:RP(a)XRP(b)—>SG, and then the general case is 
deduced as a corollary. 

The proof of Theorem 4.2 is similar to the proof of 4.1, once ana­
logues of Brown's results for the index surgery obstruction for Z2-
manifolds have been established. 

As consequences of 2.2, 3.1, and 4.1, and 2.3, 3.1, and 4.2, we have 

THEOREM 4.3. Let k4n^GH^~2(G/TOP) be as in §2. Then ;*(£4n-2) 
= 0EH*(SG) if and only if 4»5*2' If 4» = 2', then (i*(kJ-.2), ei) = lif 
and only if 7G5(2) , d(I) = 2 > - 2 . 
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Theorem 4.3 was first proved by Madsen, using the techniques of 

[3]. 
THEOREM 4.4. Let k4n&H*n(G/TOP) he as in §2. Then i*(kAn) 

= 0Gi7*(SG) if 4n^2i If 4» = 2 ' then ^ ( f e O » * * ^ 1 ) . Hence 
i*(k^+k2

2j~1)=0. 

REMARK 4.5. Note that by Remark 2.1 and Theorems 4.3 and 4.4, 
the map i* :H*(G/PL)—>H*(SG) is also computed since (i*(k{), e2

att)) 
= 1. 

Let KiPJ^KxXK* where K^lJn^'^ K(Pn,n) and K2 
= I ln^-s K(Pni n). 

THEOREM 4.6. There is an exact sequence of Hopf algebras 

Zi-+H*(SO) ® A(A ® C2) ® ( ® CM ) -* #*(SG) 

-> £f*(G/TOP) -> r(IT) (8) #*(iT2) -> Z2 

ztóere W is a graded set such that there is an isomorphism of Hopf 
algebras H*(K1)~T(W)®T(l\ieS(2), I^2J). 

5. The main theorems. In this section, we state the main results. 
The proofs consist of (careful) applications of the Eilenberg-Moore or 
Serre spectral sequence of the fibrations involved. 

THEOREM A. There is an isomorphism of Hopf algebras 

H*(BTOP) ~ H*(BO) ® BCs®( <g> BCn) ® E(s(2I| / GS(2))) 

® T(W) ® ff*(2T0. 

F«r/Aéîr, H*(BO)®BCz®(®n^BCn)^imeLge (H*(BTOP)->H*(BG)), 
and T(W)®H*(K2)c^image (H*(G/TOP)->H*(BTOP)). 

THEOREM B. There is an isomorphism of Hopf algebras 

H*(STOP) c- #*(SO) ® A(A ® C2) ® ( ® C» ) ® r ( 7 ) ® H*($lK2) 

where V is a graded set such that, as algebras, F(F) =E(s~1(W)). 

The computation of iT*(J3PL) is more complicated because of 
Remarks 2.1 and 4.5. First, we need more notation. Let 

Y = { 2 < ( 2 , l , l ) | î è 0} \J {2<(2^1+ 1 , 2 ' + l , 2 0 | » , i è O} 

VJ{2<(2^*+1 + V + 1, 2** + V, 2**) | t, j , ^ 0 ( C 5(3). 
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Let X = S(3)-Y, and let X 0 = {lGX\e(I) = o } . Let XX = X-~XQ. 

Finally, let Kl = II»**.^-» Jf (•?*> »). 

THEOREM C. There is a» isomorphism of Hopf algebras 

H*(BPL) ~ #*(£0) O P(Z)®( ® 5Cn ) 0 P(s(XÙ) <S> r(W0 

® H*(K'2)® E(s(Xa)) ® £(^(2 / | ƒ G F)). 

wAere Z is a graded set such that P(Z) ®A(P(s(Xi)))c^BCi. 

THEOREM D. There is an isomorphism of Hopf algebras 

H*(SVL) ~ H*(SO) ® ( ® Cn ) ® Z2|>i | / G X] 

® A(Z2[ei | / G F]) ® r (F) ® H*(tiK'2). 

REMARK. I t is easy to read off the dual Hopf algebras H*(BTOP) 
andtf*(£PL) and the cobordism ring3lSL~9l0*® (H*(BPL)//H*(BO)) 
from Theorems A and C. 
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