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Let G be a finitely presented group with generating elements 
&i, • • • , a\ and defining relations i?i = l, • • • , JRM = 1. We assume 
without loss of generality that the relators Ri form a symmetric set, 
i.e. that the Ri are cyclically reduced and are closed under the 
operations of taking inverses and cyclic transforms. We call G an 
eighth-group if it satisfies the following condition: 

(*) If R&XYsind Rj^XZ are distinct relators, then the length 
of the common initial segment X is less than 1/8 the length of either 
relator. 

A classical example of such a group is the fundamental group Gk 
of an orientable closed 2-manifold of genus k > 2 ; it has the presenta­
tion 

Gk = gp(#i, bi, - * • , ak, bk; aibiai b\ • • -a^dk bk = 1). 

More generally, the Fuchsian groups F(p;ni, • • • , n&\ m), see Green-
berg [3], are eighth-groups if Ap+d+tn, n\, • • • , nd>8. 

The class of eighth-groups were first considered by Greendlinger 
who solved the word problem [4] and the conjugacy problem [5] 
for them. Similar "small cancellation" groups have been studied by 
Tartakovskii [8], Britton [ l ] , Lyndon [6] and Schupp [7], among 
others. 

We now state our main result. 

THEOREM. Suppose W is an element of infinite order in an eighth-
group G. If \m\9£\n\ then Wm and Wn are in different conjugacy 
classes. In particular, W, W2, W3

f • • • are in different conjugacy 
classes. 

This theorem has already been known to hold for the above fun­
damental groups Gk and for the Fuchsian groups; but all the proofs 
have been topological. Our theorem holds for a much wider class of 
groups and, moreover, the proof is purely algebraic. 

The author conjectures that the theorem also holds for the small 
concellation groups in general. 
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We also note that Gowdy [2] has classified those elements in 
eighth-groups which are conjugate to their inverses, and showed that 
no such elements exist if the group is torsion-free. 
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