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Let G be a finitely presented group with generating elements
a, + -+, ax and defining relations R;=1, - - -, R,=1. We assume
without loss of generality that the relators R; form a symmetric set,
i.e. that the R; are cyclically reduced and are closed under the
operations of taking inverses and cyclic transforms. We call G an
etghth-group if it satisfies the following condition:

(*) I Re=XY and R;==XZ are distinct relators, then the length
of the common initial segment X is less than 1/8 the length of either
relator.

A classical example of such a group is the fundamental group G
of an orientable closed 2-manifold of genus k> 2; it has the presenta-
tion

-1 -1 -1 -1
Gr = gp(ay, by, * * -, Gk, bi; a1bras by -+ -arbrar by = 1).
More generally, the Fuchsian groups F(p;n, « - -, na; m), see Green-
berg [3], are eighth-groups if 4p+d+m, ny, - + -, na>8.

The class of eighth-groups were first considered by Greendlinger
who solved the word problem [4] and the conjugacy problem [5]
for them. Similar “small cancellation” groups have been studied by
Tartakovskii [8], Britton [1], Lyndon [6] and Schupp [7], among
others.

We now state our main result.

THEOREM. Suppose W is an element of infinite order in an eighth-
group G. If |m|s%|n| then W™ and Wn are in different conjugacy
classes. In particular, W, W?, W3, - - - are in different conjugacy
classes.

This theorem has already been known to hold for the above fun-
damental groups G and for the Fuchsian groups; but all the proofs
have been topological. Our theorem holds for a much wider class of
groups and, moreover, the proof is purely algebraic.

The author conjectures that the theorem also holds for the small
concellation groups in general.
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We also note that Gowdy [2] has classified those elements in
eighth-groups which are conjugate to their inverses, and showed that
no such elements exist if the group is torsion-free.
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