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1. Introduction. A classical problem in the calculus of variations is 
the optimization of a multiple integral over a domain G of a function 
containing as arguments the independent variables, the unknown 
function and its partial derivatives up to order I. Usually the unknown 
function is required to be an element of the class of all functions that 
are 2/-times continuously differentiable defined on an open domain 
containing G. 

The optimization problem that is dealt with in this paper differs 
from the one above in that the class of admissible functions to be con­
sidered is the collection of all sufficiently smooth solutions in G of a 
given partial differential equation of order greater than or equal to 21. 

This paper contains the definition of the variational adjoint, a spe­
cial form of the variational adjoint boundary conditions, and neces­
sary conditions for the elliptic as well as for the parabolic case. The 
necessary conditions take the form of a boundary value problem. 

A physical application occurs in the control with boundary and 
initial conditions of a process in G that is described by a specific 
partial differential equation. If the differential equation is of elliptic 
type the process may be controlled by Dirichlet boundary conditions 
or by any other set of boundary conditions that generate a class of 
admissible functions. 

2. Notation and definitions. R' is the ^-dimensional Euclidean 
space. G is an open bounded domain in Rv with boundary dG. 3GGC* 
denotes that dG is fe-times continuously differentiable. If dGÇzC1 then 
n is the outward unit normal vector to dG. If A CRV, then nbh A is an 
open set in Rv that contains A. If &£C*(G), then ||w(#)||& denotes the 
sum of the supremums in G of the absolute values of the function u 
and all its derivatives of order less or equal to k. If a G [l, v] (a an 
integer) then Dau(x) denotes du(x)/dxa, u,a is the same as Dau(x). If 
3GGC* and if uECk(nbh dG) then (d/dn)ku(x) is the jfeth derivative 
of u along n on dG. 
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Convention. Summation is taken over indices ai if they are repeated 
in the same term. The summation indices a»- always run independently 
from 1 to v. If the first index in a sequence of indices has a serial 
number that is one bigger than that of the last index in the subscript 
(or superscript), then the quantity is interpreted as one without 
any subscript (or superscript) (e.g. if j = 2 then u,ai,-,aj should be 
read as u). 

The differential expression L is given by 

(2.1) L = £ A{x) Dai--Dak, xEG. 

«It—.«& 

The coefficients A (x) are assumed to be symmetric in the indices 
«i,—,ajjfc. L* is the formal adjoint of L, 

The functional J, defined on Cl(G), is given by 

(2.2) J(u) = I F(x, u(x), Du(x),—iD
lu(x)) dV. 

J o 

Here it is assumed that : l&[l, m]\ FEC2{R*)y rj = ]>X=o (v*)Î and 
dF/dutCll,-,aj is symmetric in ah—,aj for 2^/fgZ. 

For a given function ƒ £ C(G), the function spaces U, UH, U{i) and 
Un are defined by 

(2.3) uEUiS (1°) L(u(x))=f(x), xEG, (2°) w G O ( G ) , (3°) J(u) 
is defined. 

(2.4) uE UH iff (l°)JL(u(x)) = 0, xGG, (2°) wGCw(G). 
(2.5) tf«> = Ur\0(G); 0g> = UHC\C*(G). 

The cZass <?ƒ admissible functions W and the corresponding class of 
admissible variations WH are chosen in accordance with 

(2.6) (1°) IF is a nonempty subset of U; (2°) WH= {ôu:8u = u1-u2 

A ^ i G W /\u<iE W\ ; (3°) PFis chosen in such a way that PFjy is a linear 
function space. 

DEFINITION. J has a relative extremum within W a t wG W if there 
is a positive real number 8, such that J(u + bu) — J(u) is either definite 
positive or definite negative for all buEWH that satisfy: ||8w||j exists 
and is smaller than ô. 

3. The variational adjoint. 

THEOREM 1. Assume thai: (1°) FEC^R'); uEC2l(G); buEU^; 
dGEC"\ (2°) Aal'-'«kECk(G),for0^k^m. (3°) There exists a function 
vECm(G) that satisfies L*(v(x)) = [F]tU, for xEG. Then bJ(u\ du), the 
principal linear part of the variation, can be written as 
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w i r - l m,—j~ 1 «1.—-.«t+A 

- Z ) 5W.aL-.ay Ê ».a /+ l.-.a /+<i>(f Î j ) > ^ -

Here [F], t t, tóe Ruler expression, is given by 

1 / dF \ 
(3.2) [F]tU = £ ( - I ) * Z V - - A . > ( - )> * e c 

ÜTAe expressions £«!•-»«*, O g j ^ / — 1 , x(EdG, are given by 

(3.3) <?«•-«> = E (~ D*-̂ -1 j * W • • A,M(—^ ) } «at. 
*~i+l I \OUtalt~tak/' 

The functions 

Pli\j)]+' l ^ i ^ m - 1 , 1 £j£m-i-l, x&dG, 

are given by 

(3.4) pa-j) = E (-i)w-*( J ) ^:<:;+;;*1,_.at_lWat. 

DEFINITION. Assume that FGC'+K^O; «GÎ7 ( 2 Ï ) ; dGGO»; 
i4ai'-»«ftGC*(S), for O g & g m . If there exists a function z/GO(G), 
that satisfies: (1°) £*(»(*)) = [F],U1 X G G , (2°) 5/(w; 8«), as given in 
(3.1), vanishes for all functions §^GCm(nbh dG), then this function v 
is called a variational adjoint of u with respect to L and J. The boundary 
conditions (2°), or conditions that are equivalent are called the 
variational adjoint boundary conditions. 

THEOREM 2 ( M A I N THEOREM) . If vis a variational adjoint of u, with 
respect to L and J, then the variational adjoint boundary conditions on 
dG', the noncharacteristic part of dG, are given by (i), (ii) and (iii) as 
follows : 

(i) (d/dn)h(x) = 0, forO^jSm-l-landxE dG'. 

(If l~m, then this condition is vacuous.) 

ai,— ,am 

(ii) (d/dn)m-lv(x) = ( - 1)—'(»«!- • -n^Aix) )-1»„1- • •nai-1Q^--'^, 

for x G dG'. 

5W.aL-.ay
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l~ 1— ƒ m- j—h—l «1,—, <*»•+ƒ+ h 

P(i;j + k) 

/or xGdG' and l — 2^j^0. (If / = 1, JAe» /JWs condition is vacuous.) 
For OSjSl-2, OShSl-l~j,xGdG,the 

X(A; j ) * 

denote linear differential expressions of order h. 

DEFINITION. Each of the conditions in Theorem 2 is called varia­
tional adjoint boundary condition k, if the highest order of differenti­
ation of v in that condition is k. So k=j in (i), k = m — l in (ii) and 
k = tn~-j — l in (iii). 

4. Necessary conditions. 

THEOREM 3 (ELLIPTIC CASE). Let the following conditions be satisfied 
for some integer g ^ m a x { 0 , 2l+[v/2] + l—m], 2Z£ [2, m], and 
t = p+ [v/2] + l . (1°) G w bounded and dGECm+t. (2°) L « uniformly 
strongly elliptic in G. (3°) A«i>-'aiEC2>'+t(G), O^jSm. (4°) / £ C ' ( G ) . 
(5°) /?eCI+i' '«+*(.R»). (6°) W = !/<"•+*>. /ƒ now uEW, then the Fred-
holm alternative holds for the boundary value problem 

L*(v(x)) = [F],u, xEG, 

(d/dn)*v(x) = 0, 0 £ j S \ m - 1, x G dG, 

î̂ fe'fe awj solution of (4.1) is #ƒ c/<m Cm(G). If moreover 8J(u; ou) = 0, 
/or a/Z SUÇZWH, then any solution of (4.1) also satisfies the variational 
adjoint boundary conditions \m, — >m — \. (<9G=dG'.) Conversely, if 
there exists a solution of (4.1) that satisfies the variational adjoint 
boundary conditions \m, — ,m — 1, then 5J(u ; ou) = 0, for all ou £ WH> 

DEFINITION. If the requirements (l°)-(6°) of Theorem 3 are met 
then the associated boundary value problem is defined by 

L(u(x)) =f(x),ueW,xEG, 

_ x L*(v(x)) = [Flu, x EG. 

The variational adjoint boundary conditions 0,—,m — l , a s 
given in Theorem 2, are satisfied on ÔG. 

COROLLARY. If J has a relative extremum within W for some u&W, 
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if the requirements (l°)-(6°) of Theorem 3 are met, and if [F]t „ is 
orthogonal in L2(G) to the null space of L, then there exists at least one 
function vÇECm(G), such that u and v together satisfy the associated 
boundary value problem. 

With regard to the domain G, the following definitions are in force 
in the next theorem. Gv-\ is an open domain in Rv~~l with boundary 
dGy-i. Hv-x is the intersection of the i£"~ ̂ closure of G>_i with an 
open ^""^neighborhood of 36>_i. G = G„_i X (0, T). dG is the boundary 
of G. dG(0)= {s£2^:* 'eG>- iA*F = 0 } . (*' = (xu—,*,_i).) Similarly 
for dG(T). dH(0)= {xEKlx'EHr-xAxp^O}. Similarly for dH(T). 
dG(0, T]= {xER>:x'EdGv^Ax,G(0, T]}. 

THEOREM 4 (PARABOLIC CASE). Let the following conditions be 
satisfied for: r = l + [(2q+v+l)/2m]; s = m+q+r+ [v/2]; t = s--r 
+m(r+l);t(0) = 3m+[v/2]+m[(v+l)/2m].(l°)lC[l,m/2l q^t(0) 

+ 2l-m. (2°) Gv-X and T are bounded) dGv-iEC^+lK (3°) A(xfak 

s=0, if at least one index has value v and kÇz[2,m], and Av^l. Further-
ai,—,aj 

more, L is uniformly parabolic in G. (4°) A(x) £C'+*(G), 
O^j^m. (5°) /GC"(G); (d/dn)*f(x)=0, for O^jSt and xGdH(0). 
(6°) F G C I + 1 + ^ ( l î ' ) . (7°) W=U^+«K (8°) (d/dn)'[F]9U = 0, for 
0 ^ j ^ / ( 0 ) , xEdH(0), and uEW. (9°) dF/du,v has compact sup­
port in dG(T) for any uGW. (10°) dF/du,ai,-,aj^0, for 2^j^l and 
# £ n b h dG(Q)\JdG(T). If now uEW, then the initial boundary value 
problem 

L*v(x) = [F],u, for x EG, 

(4.3) (d/dn)k(x) = 0, for 0 ^ j £ \m - 1 and x G dG[0, T), 

v(x) = + dF/du,,, for x G dG(T), 

admits a unique solution, which is of class Cm(G). If moreover 
ôJ(u\ Su) = 0, for all SUCZWH, then a solution of (4.3) also satisfies 
the variational adjoint boundary conditions \m,—, ra — 1 on the lateral 
boundary, dG(0, T) and the condition: v(x) = +dF/dutP on dG(0). 
Conversely, if there exists a solution of (4.3) that also satisfies these 
extra boundary conditions then 5J(u; hu) vanishes f or all ÔUÇZWH-

REMARK. The associated boundary value problem is defined simi­
larly to that in Theorem 3. A corollary similar to that with Theorem 
3 is valid for this problem. 

The existence and regularity statements in Theorems 3 and 4 are 
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based on results in [2]. Simple results for the hyperbolic case are 
omitted in this announcement. They can be found in [ l ] . 
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