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1. Preliminaries. Consider the initial value problem for the following 
class of nonlinear Boltzmann equations: 

(1.1) | ƒ + vVJ = Qf (t> 0), /(O) =f0^0, 

with collision operator 

(1.2) Q/(*,»,)= J [•/„*<ƒ,/2> - <flf2>]kdudv2. 

The space coordinate x belongs to a parallelepiped 

co = {x = (xl9x29x3); \xj\ ^ a/2}, 

and 

<A A> = ƒ(*, vjftx, v2) if I ƒ(*, vjfix, v2)\ S N, 

= N sign/(x, Vx)f{x, v2) otherwise. 

The impact parameter u in R2 is, for convenience, restricted to the disc 

B2 = {ueR2;\u\ ^ l/y/n}. 

The kernel k(vu v2) is a measurable, nonnegative, and bounded function 
vanishing for \vt\

2 + |i?2|
2 > K2, with fc(t7l9t72) = K^2^vi) anc* invariant 

under J*, J*/c = fc. Here J* is induced by a C^diffeomorphism J on 
K3 x K3 x JB2, restricted in a certain way. With the velocity mappings 

1: R3 x R3->R:(vuv2)-+ 1, 

p: R3 x R3 -> R3:(vu v2) ->vx + v2, 

T:R3 x R3^R:(vuv2)^\Vl\
2 + \v2\\ 

S: K3 x R3-> R3 x R*:{vl9v2)'+(v29v1)9 

the restriction on the (collision) mapping J can be written 

(1.3) lo . / M =l , P°JU = P> ToJ w =T, 

^MS 1969 subject classifications. Primary 8245, 8220. 
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(1.4) 2oJu = JMoZ, 

(1.5) JoJ = identity. 

For a discussion of the impact parameter u9 the kernel k and the collision 
mapping J, see [1]. 

We now consider Q. As usual Q is zero for the Maxwell distributions, 
which thus are equilibrium solutions. A basic assumption in the deduction 
of the Boltzmann equation in kinetic gas theory is the low density of the 
gas. Then the contribution of the higher collisions are neglected in the 
development of the gas on physical grounds, so that the binary collisions 
alone are responsible for the development of the gas through the binary 
collision operator. For the same physical reasons an additional term 
should be inserted in case high densities develop in the gas. In the present 
paper that additional term cancels the binary collisions at high densities. 
But the proofs below hold for more general additional terms, thus under 
more general assumptions on the behaviour of the gas at high densities. 

Boltzmann used k = C\vl — v2\ as the weight-function in Q. In the 
present paper, however, we use for the physical case 

k = C\vx - v2\ (K|2 + H 2 ^ X2), 

= 0 (K|2 + \v2\
2 > K\). 

We consider (1.1) written as 

(1.6) jf(x + vxt9 vl9t) = Qf(x + vtt9 vl91) (t > 0), /(O) = /o è 0, 

ƒ here denoting the periodic continuation in x with period œ of the function 
ƒ in (1.1). The main result is an existence and uniqueness theorem for (1.6), 
when f0 e JJ°{m x R3). We also prove the moment conservation laws and 
the usual laws of macroscopic gas dynamics as well as the Jf -theorem. 

As in the bounded space-homogeneous case treated in [1], the existence 
and uniqueness is based on the local Lipschitz continuity of Q and the 
positivity of a related operator. The method also works in more general 
situations, e.g. for a containor a> with sufficiently well-behaved boundary 
under specular reflexion and a constant exterior force. 

2. Results. We notice that Qf{x + vtt,vl9t) does not depend on 
It̂ l > Kx. Hence it is enough to consider initial data f0 eL°°(Q) with 

Q = {(x9v);xeœ9\v\ ^ Kx}9 

and to consider the solution/for t > 0 as a function of v for |t?| 5* Kx and 
periodic in x with period œ. 

We also notice that 
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\<fif2> - <gig2>l ^ |/(*,!>i)| \f(x,v2) - g(x,i;2)| 

+ IgiX'ViïWffavJ - gfavJl 

Then Q is locally Lipschitz continuous, 

(2.1) \\Qf - Qg|L ^ K2(\\fU + llslUIIf - 8lL. 
if || || ^ denotes the norm in L°°(Q) and K2 = 2 sup fc3~ MJKfr. 

THEOREM 2.1. T/iere exists a unique, nonnegative solution f(x9v9t) 
G L°°(ft) (t > 0) o/(1.6) for every f0 ^ 0 in L°°(Q). 

PROOF. The local existence follows as in the space-homogeneous case 
of [1]. We repeat it for the convenience of the reader. By (2.1), Q is locally 
Lipschitz continuous, and so there exists a unique solution ƒ of (1.6) for 
0 ^ t^ t09t0 > 0 only depending on K2 and \\f0\\^ But ||ö(/,/)lloo 
^ iVK2 and 

|| / W H . ^ II/olloo + £ W 2 = ||/olloo + ^ X 2 , 

(2.2) 

sup|/(x + irtl9 r, tx) - f(x + trt2, t;, t2)| ^ ATK2|r ! - t2\. 

We conclude by the usual continuation argument that ƒ exists for all 
t > 0. 

The proof is complete if we can show the positivity of ƒ Consider the 
equation 

g(x + vxt9 vl91) = exp[-H(x + vxt9 t)]-f0(x9 vx) 

(2.3) 4- exp[ - H{x + vxt9 t) + H(x + i?^, s)] 

with 

(2.4) H(x + itf, f) = ƒ (x + ÜT, vl91) <fo2 dt sup fc 
JO J|r2|£Ki 

and 

(2.5) Q'g(x, vl9 s) = gg(x, vl9 s) + g(x, !?!, s)g(x, i?2, s) <fo2 sup k. 

We notice that Q'g ^ 0, if g ^ 0 and that/satisfies (2.3). But by (2.1) and 
(2.5), 
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lie'/ - fi'gl. ^ WQf - Qih + K2(\\fh + MM - «II» 
( 1 6 ) ^2X 2 ( | / |U + | | g | | J | / - g | 0 0 . 

Moreover by (2.2) and (2.4) for every t0 > 0, there is a Cf0, such that 

(2.7) 0 < e x p [ - # ( x + vt91) + H(x + vs, s)] < Ct0 

for 0 ^ s S t g t0. It follows by (2.6) and (2.7) that the L00-solution of 
(2.3) is unique. For small t it is the limit of the following convergent 
iteration scheme 

g i = 0 , 

gj(x + vxt, vut) = e x p [ - # ( x + vxt9 tj] •/o(x, t;1? £) 

+ e x p [ - # ( x + M, t) + H(x + t v , s)] 
Jo 

• ô'gj-i(x + vxs9 vl9s) ds, j = 2 ,3 , . . . . 

But ĝ  ^ gx ^ 0 and by induction (g,)* is a nonnegative, monotonically 
increasing sequence. Hence g = l im^^ gj ^ 0. As ƒ is the unique solution, 
it follows that g = ƒ ^ 0 for small t, and so by a continuation argument 
for all t > 0. 

THEOREM 2.2. The L^-solution f of (1.6) satisfies for q> = 1, t;, |t>|2 tfie 
moment conservation 

/ (x, v, t)cp(v) dxdv = /0(x, tO<p(u) dx du 
Jn Jn 

and generates a weak solution to the equation of macroscopic gas dynamics 

Pi C 3 3 C 
— /(x, v9 t)<p(v) dv + £ — /(x, t;, 0^/PW dv = 0. 

PROOF. Using (1.3)—(1.5) we can easily show that 

(2.8) Qf(x,MMt>)<fo = 0, 

and then using (1.6) that 

f(x 4- vt9 v, t)<p(v) dvdx = /0(x, r)<p(t;) dx dr. 
Jn Jn 

Hence the moment conservation holds. 
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Multiplying (1.6) by cp and a continuously differentiate function 
\j/(x + vt, t) with period œ in x, and then integrating and applying (2.8) 
we get 

/(x, v, t)(p(v)i//(x9t) dvdx = /0(x, v)(p(v)\l/(x9 0) dx dt; 

s)<P(v) -z- ^(x9 s) dv dx ds 
OS iif(x'v' 

Ê \f(x,v,s)(p(v)vj—il/(xis)dvdxds. 
j=i Jo J oxj 

These are the weak equations of macroscopic gas dynamics satisfied by/. 

THEOREM 2.3. The Jtf'-function 

jtf>(t) = f(x, v, t) log/(x, i?, t) dx dt? 

is nonincreasing as a function oft. 

PROOF. Evidently the standard proof of this Jf-theorem holds in a 
formal sense in the present case. This formal proof is a strict proof for 
0 S t ^ t0, if 

(2.9) / ( x , M ) > e > 0 for (x , t>)eO,0^r^f 0 (cf., e.g., [I]). 

By (2.2)-(2.4) the solution ƒ„ of (1.6) with initial value f0 + n"1 e~v2 

satisfies (2.9) for any t0 > 0. Hence 

1 fn(x, v,1) log fn(x, v9 t) dx dv 

is nonincreasing as a function of t for 0 ^ t ^ t0. But lim^^, fn = ƒ in 
L00, uniformly in t for 0 ^ t ^ t0. We conclude that 

#(t) = ƒ (*, t>,1) log ƒ(x, t\ 0 dx dv 

is nonincreasing as a function of f for t > 0. 
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