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1. Introduction. About ten years ago P.R. Halmos addressed this 
Society on Recent progress in ergodic theory [11]. He closed with the 
wish that: 

"I hope that in the near future, in the course of the next twelve years, 
say, humanity learns sufficiently many new answers to these fascinating 
old questions to warrant another society address on the subject." 

A few months ago, such an address was given by D. Ornstein (Some 
new results in the Kolmogorov-Sinaï theory of entropy and ergodic theory, 
Bull. Amer. Math. Soc. 77 (1971), 878-890). I propose here to survey 
some recent developments in the isomorphism problem and have made 
an attempt to present enough background material to make these results 
accessible to the nonspecialist. 

We shall be concerned with the basic problem of classifying measure 
preserving transformations. For much of the background material the 
survey of Halmos [10] is adequate; for later developments especially 
for the notion of entropy (cf. below) see Rokhlin's latest survey [28] 
and the works quoted there. The first part of our report will contain an 
exposition of past work on the classification problem while the second 
part will treat some recent developments in greater detail. We now 
proceed to fix the terminology and review the basics. 

A measure space (X,âiï,m) consists of an underlying set X, a ^-algebra^ 
of subsets of X on which a countably additive measure m is defined. 
We will be considering throughout finite measure spaces which have 
been normalized so that m(X) = 1, and furthermore assume that (X9â99 m) 
is a separable Lebesgue space. A measure preserving mapping (m.p.m.) 
is a mapping q> between two measure spaces q> : Xx -» X2 such that 

(a) q>~1(B2)eâS1 for all B2eâS2, 
(b) m1((p-1(B2)) = m2(B2\ B2eâS2. 

In case the two spaces coincide q> is usually called a measure preserving 
transformation (m.p.t). Given the probabilistic background of this part 
of ergodic theory, we shall not distinguish between q> and q>' if they disagree 
on a set of measure zero. For example <p, a m.p.t, is said to be invertible 
if there exists a <fi such that qxp' = identity (a.e.) and q>'q> = identity (a.e.). 
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Such m.p.t will be called automorphisms, while endomorphism will be a 
synonym for m.p.t. 

The following are some of the basic examples in the theory. 
EXAMPLE 1. X is any compact group, âiï the Borel sets, m Haar measure 

and q> is the rotation defined by some fixed element aeX, i.e. (p(x) = ax. 
EXAMPLE 2. X9£$ and m as in Example 1 but q> is now a continuous 

algebraic endomorphism of X onto itself. One easily checks that q> 
preserves the Haar measure. 

EXAMPLE 3. Let (XO90So,mo) be some fixed measure space. Form 
X = rii€/ Xi> the cartesian product of countably many copies of X0 

where the index set I is either the positive integers or all of Z. By the usual 
construction endow X with the product measure of the component 
measure spaces. Finally define q>(x) by requiring 

nMx)) = ni+1(x) 

where 7if is the projection of X onto its ith coordinate. This m.p.t. is 
called the bilateral or unilateral shift, according to what ƒ is. It is also 
referred to as a Bernoulli shift to emphasize the fact that the measure on X 
is product measure and hence the coordinate functions nt are indepen­
dent in the sense of probability theory. 

EXAMPLE 4. X is as in Example 3, and so is âS9 Le. âS is the smallest 
cr-algebra with respect to which the mappings rcf : X -* Xt are measurable. 
Now m is chosen to be any measure on X such that <p, as defined in 
Example 3, becomes a m.p.t. A wide variety of such measures are known 
from the theory of stationary stochastic processes. In fact, there is a 
one to one correspondence between stationary X0-valued processes and 
such measures. Borrowing terminology from that theory we refer to 
the shift as a Markov shift if the sequence {rcj forms a stationary Markov 
chain, and so on. 

It is worth emphasizing that Example 4 is the most general example 
of a m.p.t. In fact, given a m.p.t we can find a real valued function 
f0:X -• R that separates points in X. Defining then fn(x) = f0(<Pnx) we 
obtain a real valued stationary stochastic process (...,ƒ_!, /0, fl9 ...) 
which enables one to find a general shift isomorphic to the original 
m.p.t. It is a more difficult fact that if q> is ergodic and has finite entropy 
(see below) then it can be represented by a general shift with a finite 
state space. This result is due to Krieger [15] who improved Rokhlin's 
result which yielded, under the same hypothesis, a countable state space 
with finite entropy. 

Two m.p.t. (Xh£gh mh <pf) are said to be isomorphic if there exist m.p.m. 
{j/l:X1-^ X29 ij/2:X2-+ Xx such that y\f^2 (resp. t / ^ i ) is the identity 
on X2 (resp. XJ and <p2\l/l = ^iQu Vi^i = ^2^2- Again it should 
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be emphasized that these equations are only required to hold a.e. Unlike 
the case in the category of topological spaces the problem of classifying 
the underlying measure space is trivial, namely any separable Lebesgue 
space is isomorphic to the unit interval with Lebesgue measure together 
with at most countably many atoms. A weaker notion of isomorphism 
in which the conditions that 2̂*Ai and ^^i2 be the identity is dropped 
was introduced by Sinai [31]. To date it is not known whether or not 
weak isomorphism implies isomorphism. There is another way of weak­
ening the notion of isomorphism for endomorphisms that are not auto­
morphisms. To describe this we need the idea of a natural extension due 
to Rokhlin [27]. 

An automorphism (X,J?,m, <p) is said to be a natural extension of 
(X9â#, m, (p) if there exists a m.p.m. n : X -• X such that (i) (pn = nq> and 
(2)M is the smallest ^-invariant c-algebra that contains n'1^). Rokhlin 
has shown that the natural extension exists, uniquely up to isomorphisms. 
The basic example to keep in mind is that of the unilateral shift whose 
natural extension is the bilateral shift. 

To be more precise, suppose that (X,â$, m, (p) is a unilateral shift with 
m any <p-invariant measure, as in Example 4. Then for X, Jf, q> we take 
the corresponding bilateral shift and it remains only to define m. The 
standard extension theorems of measure theory imply that it suffices to 
define m in a consistent fashion on finitely based cylinder sets. But since 
a finitely based cylinder set Ö in X can also be considered as a finitely 
based cylinder set C in X (unique up to a shift by q>) we can use m itself 
to define m on such sets, namely set m(C) = m(C). It is straightforward 
to check that conditions (1) and (2) are satisfied. 

Two endomorphisms will now be said to be quasi-isomorphk if their 
natural extensions are isomorphic as automorphisms. This concept of 
isomorphism is weaker than true isomorphism, since there are unilateral 
Markov shifts which are not isomorphic as unilateral shifts but whose 
bilateral extensions are isomorphic. We shall discuss this matter in 
greater detail later on. This notion of quasi-isomorphism was first used by 
Katznelson [14] in analyzing the ergodic endomorphisms of a finite-
dimensional torus. 

2. Invariants. A property or object associated with a m.p.t. is said to 
be an invariant if it is the same for isomorphic m.p.t.'s. The basic technique 
to study the classification problem is to find a sufficient number of in­
variants to form a complete set, i.e. a set of invariants large enough so 
that if all the invariants agree for two m.p.t. one can conclude that the 
m.p.t. are isomorphic. Historically, the first such invariants to be discussed 
were ergodicity and the unitary operator associated with a m.p.t. The 



1972] THE ISOMORPHISM PROBLEM IN ERGODIC THEORY 671 

latter is constructed as follows: Let H = I}(X9â#,m\ and define 

(2.1) U,f-(x)=f(q>x). 

It is easy to verify that U9 is an isometry; it is clearly invertible if and 
only if q> is. An early question in the field was to what extent does the 
isomorphism of q>1 and q>2 follow from the unitary equivalence of U9l 

and U92. In the next section we shall recall some well-known results 
along these lines. 

One can view ergodicity as a part of the structure of U99 namely, 
a m p.t. q> is said to be ergodic if the dimension of the solution space of 
Uyf = ƒ is one. A more familiar formulation, based on the ergodic 
theorem, is this: q> is said to be ergodic if, for all A,Beat, 

« - 1 

(2.2) lim \jn £ m(<p~U n B) = m(A)m(B). 
«- •oo o 

Referring back to the examples in §1, conditions for ergodicity are : 
EXAMPLE 1. The cyclic group generated by V must be dense in X. 

This forces X to be a commutative monothetic group. The simplest 
infinite example is an irrational rotation of the circle. 

EXAMPLE 2. In case X is commutative the condition for ergodicity takes 
a simple form, namely <p is ergodic if and only if #>, the dual transformation 
of the dual group X, has no periodic orbits. 

EXAMPLE 3. All Bernoulli shifts are ergodic. This follows readily from 
the basic zero-one law for independent random variables. 

Since all transformations can be represented in the form of Example 4, 
no simple criterion, apart from the definitions, should be expected here. 

A condition, stronger than ergodicity, is that of strong mixing in which 
the averages of (2.2) are replaced by an ordinary limit, i.e. q> is strongly-
mixing if 

(2.3) lim m((p~nA n B) = m{A)m{B\ all A, B eâiï. 
«- •oo 

In the examples above it is easy to see that rotations are never strongly 
mixing, the others, i.e. Example 2—Example 3 satisfy even stronger 
conditions which will be discussed in a moment. In Example 4, a criterion 
for strong mixing is: the shift is s.m. for a measure m if and only if (2.3) 
holds for all finitely based cylinder sets A,B. If a certain uniformity is 
introduced in this asymptotic independence we obtain an important 
class of transformations known as the Kolmogorov-automorphisms, and 
the exact endomorphisms. Still referring to Example 4 the definitions are : 
a bilateral (unilateral) general shift is said to be a K-automorphism 
(exact endomorphism) if 
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(2.4) lim sup \m(A nB)- m(A)m(B)\ = O, 
«-+00 Aejtf„ 

for every fixed Be&, where sén is the sub-a-algebra oiâiï generated by 
cylinder sets based on the coordinates (n, n + 1,.. .)• An equivalent 
condition, which is easier to check is 

(2.5) n < = {&*} a-e-> 

i.e. the tail (T-algebra is trivial. We have given (2.4) to emphasize the fact 
that this generalizes strong mixing. For transformations not given as 
shifts the definitions are: an automorphism (X,â#,m,(p) is said to be a 
X-automorphism if there exists a sub-tr-algebra st0 ç 0$ satisfying 

(2.6) (p'^o^ ^ol 
00 

(2.7) [J <pnj/0 generates^; 
— oo 

0 

(2.8) f) (pnjtf0 is trivial. 
— oo 

For an endomorphism one can dispense with (2.6) and (2.7) and one 
has, (p is said to be exact if 

00 

(2.9) f](p~nâS is trivial. 
l 

It has been shown [26] ([13] for the noncommutative case) that ergodic 
automorphisms (endomorphisms) of compact groups are X-automor-
phisms (exact). With this we conclude for the moment our brief survey of 
some of the invariant properties of m.p.t. and pass to some of the early 
results on the isomorphism problem. 

3. Algebraic isomorphism results. A m.p.t. is said to have discrete or 
pure point spectrum if the set of eigenfunctions, that is, functions fell 
(X,âiï, m) for which there exists a complex number A so that 

(3.1) f((px) = X-f(x) a.e., 

spans l}{X,0S, m). The following theorem is due to von Neumann [33] 
in 1932. 

THEOREM 1. T\vo ergodic m.p.t. (pu(p2 that have discrete spectrum are 
isomorphic if and only if U^ is unitarily equivalent to U^. 

This was the first positive isomorphism result in ergodic theory, and 
remained the only one for almost twenty years. The proof may be found 
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in any of the standard treatises, such as [10]. The algebraic nature of 
this result is worth emphasizing. In the course of the proof, it is first 
shown that the e.m.p.t. <pf (ergodic m.p.t.) with discrete spectrum are 
isomorphic to a rotation of compact groups Xt by elements ai9 say, 
where Xt and at depend only on U9t. This of course proves the theorem, 
but something further is also true, namely if two ergodic rotations are 
isomorphic then any isomorphism between them is necessarily algebraic, 
i.e. if 

(3.2) (pt : Xt -> Xh q>i(x) = atx, i = 1,2, 

and vt : X1 -* X2 satisfies the conditions for being a measure theoretic 
isomorphism then v1 is an algebraic isomorphism between Xx and X2. 
This is most easily seen by considering the mapping that vx induces 
on X2 to 3tu the respective dual groups. 

Even in this simplest case of discrete spectrum when the hypothesis of 
ergodicity is dropped the situation is no longer so simple. Choksi [7] 
has investigated this question, and has shown that without ergodicity 
unitary equivalence does not even imply a weakened version of measure 
theoretic isomorphism. The next development in this circle of ideas was 
taken by Abramov [1] who gave an algebraic characterization of totally 
ergodic m.p.t. with quasi-discrete spectrum. Totally ergodic simply means 
that all powers of (p are ergodic, or in other words that no roots of unity 
(other than 1) occur in the spectrum of U9. Quasi-discrete spectrum 
depends for its definition on the generalized eigenvalues used by Halmos 
[10] to give examples of transformations that are unitarily equivalent 
but nonisomorphic. 

Let G0 denote the circle group (z:\z\ = 1), and H0 = {1}, and let K 
denote the set of functions on X of constant modulus 1, G0 c K as the 
constant functions. Then define inductively 

(3.3) Hn+ ! = { g G Gn : there exists ƒ G K for which (3.4) holds }, 

(3.4) ƒ (cpx) = g(x)f (x) a.e., 

Gn+i = {f^K:(3A) holds for some geHn+1}. 

Hx is simply the set of eigenvalues of % and Gx the eigenfunctions of 
modulus 1. The Hn's and Gw's form subgroups of K, and a natural homo-
morphism v : Gn -» Hn is defined by 

(3.5) v(f) = f{(px)lf{x). 

Note that (3.5) defines an endomorphism of K, and that Gn = ker(vw+1). 
Finally q> is said to have quasi-discrete spectrum if G = ÜGM spans 
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l}(X,âiï9m). The theorem of Abramov on the classification of these 
transformations is: 

THEOREM 2. If q>9q>' are totally ergodic m.p.t. with quasi-discrete spectrum 
and there is an algebraic isomorphism between the corresponding (G, v), 
(G', v'), then q> is isomorphic to q>\ and conversely. 

Here too the method of proof is to construct a "model" transformation 
for a given (G, v), which turns out to be a unipotent affine transformation 
of some compact group. The example to keep in mind here is the following: 
Let X be the n-torus and define q> : X -• X by 

(3.6) q>(xu x2, x 3 , . . . , xn) = ( xt + a, x± + x2, xx + x2 + x 3 , . . . , £ x* )• 

There is also a theorem which says that any isomorphism between trans­
formations with quasi-discrete spectrum must be algebraic. For further 
results along these lines see W. Parry [21], who has obtained results 
similar to the above, for unipotent affine transformations of nilmanifolds. 
The isomorphism problem is reduced to an algebraic one in the strong 
sense that any metric isomorphism is a.e. an algebraic conjugacy. 

4. Entropy—definition and properties. In 1958 A.N. Kolmogorov intro­
duced a new invariant, the entropy of a m.p.t. and succeeded in applying 
it to distinguish between the hitherto indistinguishable transformations 
—the 2-shift and the 3-shift. Since this invariant has played a central role 
in all subsequent work on the isomorphism problem we will give a quick 
account of it here. For a detailed treatment, including proofs of the results 
to be stated next the reader may consult [28], [22], and [4] for example. 
The basis for the new invariant was the notion of the information content 
of a countably valued random variable, or what is the same as a countable 
partition of a probability space, a notion first introduced and exploited 
by C. Shannon in his theory of transmission along noisy channels. First 
let us establish our notation for the calculus of partitions. 

a,/},7,... will denote countable partitions of a finite, normalized 
measure space (X,â9,m). 

a = {Al9A2,...} etc. and when it is convenient, we will assume that 
a definite ordering of a is givea 

aVj8 = {At n Bj} is the join or least common refinement of a and /?. 
V?=i di is the join of ax and a2,... and an, while WfLl af denotes the 

smallest c-algebra that contains all elements of V?= 1 a* for n = 1,2,.... 
In general we will often identify a partition with the subalgebra of âiï 
that it determines, and so we will write <x a p and mean that p is a refine-
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ment of a, i.e. the algebra determined by p contains the algebra determined 
by a. 

DEFINITION 1. (a) The entropy of a is given by 

(4.1) ff(a) = - X^(^)logm(^,). 
A( e a 

(b) The class of partitions a such that if (a) is finite is denoted by Z. 
A useful extension of this notion is 
DEFINITION 2. The conditional entropy of a given M', a subalgebra of 

m is 

JXAiSi 
(4.2) £ miAA^logmiAA^dm, 

where m(A\&f) is the conditional measure of A given 3&\ i.e. that 0i'-
measurable function that satisfies 

I (4.3) m(A\m') dm = m(A n B) 

for all B e ^ ' . 

The basic properties of the entropy of a partition are summarized in 
the following proposition. 

PROPOSITION. (1) if (a v p\y) = ff(a|y) + ff(j3|a v y). 
(2) H(a\^f) S H(P\âSf) if a cz jS. 
(3) #(a|âr) ^ H(a|«r) jr«" <= or. 
(4) f/^„ î ^ tóen ff(a|^M) j H(a|« J . 

Suppose now that {ƒ•} is a countably valued stochastic process defined 
on ( I ,^ ,m) with the time shift defined by a m.p.t. <p:X->X Recall 
that this means that fn(x) = f0((p

nx)> Let a denote the partition into 
sets of constant value for /0, then q>~noi consists of the sets of constancy 
for fn. Now we will also use the notation 

(4.4) H(f0\fu..., ƒ„) = maty-1** v . . . v q>~na\ 

By the Proposition, (4), we can pass to the limit and define 

(4.5) / # , a) = Jgft if(/o|/i,...,ƒ„) = fl(«l Y *""*)• 

That is to say, the entropy of (p with respect to a is the amount of 
information contained in f0 given the future. If h((p, a) = 0 then we say 
that the process {ƒ„} is deterministic; f0 is measurable with respect to 
the future. In case the process is bilateral we could just as well have worked 
with H(f0\ ƒ_!,. . .,ƒ_„) which explains a little better the usage of determ­
inism. 
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Finally we have 
DEFINITION 3. The entropy of a m.p.t. q> is given by 

(4.6) sup %>,<*) = h(<p). 

Its obvious from the definition that h(q>) is an invariant under isomor­
phism of m.p.t. The basic result that enables one to compute the supremum 
in (4.6) is the following: 

PROPOSITION If a is a (p-generator ofâiï, Le. if the smallest (p-invariant 
a-algebra that contains a is all of 08 then h((p) = h(q>, a). 

It is now a straightforward matter to compute the entropy of a Bernoulli 
shift which we denote now by the probability vector that represents 
the distribution of the individual coordinate function. The answer is 

(4.7) Kpu...,pk) = - E PjlogPi = H(a) 

where a is the basic partition according to the values assumed by the zeroth 
coordinate. Thus we have proved 

THEOREM 3 (KOLMOGOROV). The k-shift (l/k, l/k,..., l/k) is not iso­
morphic to the l-shift (1// , . . . , 1/0 for k # /. 

With this result a new era ensued in ergodic theory, and especially 
the isomorphism questions we are dealing with. In the same year that 
Kolmogorov's paper appeared, L. D. MeSalkin [16] published the first 
positive result by showing that for a certain class of Bernoulli shifts, 
entropy is a complete invariant, i.e. he showed how to construct isomor­
phism between special Bernoulli shifts with the same entropy. We shall 
give some indication of his result in the next section. 

A surprising application of entropy was the characterization by Pinsker-
Rokhlin-Sinaï [29] of Kolomogorov automorphisms as those m.p.t.'s q> 
with completely positive entropy, which means simply that h((p, a) > 0 
for every nontrivial partition a. It soon became clear that among trans­
formations with zero entropy a wide variety of nonisomorphic types 
was possible (including all those algebraic examples in §3). However it 
was not possible to distinguish between two X-automorphisms with the 
same entropy, and so the suspicion grew that for JK-automorphisms 
entropy was a complete invariant. This has turned out to be false [20], 
but first let us continue the story which tells to what extent entropy alone 
does succeed in classifying m.p.t.'s. 

5. Entropy—as a complete invariant We have already alluded to 
Mesalkin's result, which was somewhat extended by J. Blum and 
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D. Hanson [5]. A rather full account of this work may be found in 
Jacobs [12], so that I will content myself with presenting an example 
which will convey the flavor of the method. Observe that /i(£, £, J, | ) = 
W&9 h h i> i)- Our task is to construct a mapping between the 4-shift 
and the shift on five symbols with measure (7, i , i , | , |). To this end denote 
the four symbols by Al9 A2, Bu B2 and the space of five symbols by a, 
&u> b12, 2̂1» &22- Suppose then we are given a sequence of At\ B/s; 
referring to the display (5.1), the mapping may be described in several steps. 

...Bi A1 A2 B2 A2 A1 B2 B2 B2 A1 A2 Bx 

(5.1) 
...fe? a a b22 a a b12 b22 b12 a a b2i 

I I II III I 

Step 0. Write out a sequence of lower case a's, fe's underneath the given 
sequence, paying no attention to subscripts. 

Step I. Group adjacent AtBj and give the b underneath the Bj the sub­
script ij. Cross out these A's and Fs. 

Step II. Group the newly adjacent AtBj9 and give the b underneath 
the Bj the subscript ij. Again cross out A's and Fs whose subscripts we 
have used. 

Continue on in the same fashioa We have indicated in (5.1) at what 
step the subscript was attached to the lower case b's. The question-mark 
indicates that one has to extend the sequence to the left to decide how to 
subscript that b. 

Naturally, it is not the case that starting from any sequence of A?s, 
B/s such a procedure will eventually assign a subscript to every b. However, 
since the measure on the space of 4's and Fs is such that A and B occur 
independently with equal probability, it is a consequence of the recurrence 
of simple random walks in one dimension that for almost every sequence 
such a procedure will eventually assign a mate to every B, and every A 
will have a B assigned to it. Indeed the recurrence implies that from any 
starting point, with probability one, there will eventually be an equal 
number of >Ts and Fs to the right of the starting point, which implies 
(if the symbol with which we begin is an A) that each A is mated to a B 
and conversely. 

From its very nature it is clear that the mapping we have defined com­
mutes with the respective shifts, indeed since no use has been made of 
a starting point we have actually defined the mapping on whole orbits. 
The invertibility also presents no problem; one uses the same groupings 
to index the A's and Fs. A bit of work is required to show directly that 
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the measures are preserved, i.e. that we have an isomorphism of the 
m.p.t.'s. One can use instead the fact that (i,£,i,J) is an intrinsically 
ergodic system [34], which leads directly to the required conclusion. 

Mesalkin's general result extends this combinatorial type of argument 
to any two Bernoulli shifts whose probabilities are of the form k/pl for 
some prime p (in our example p = 2). A few years after Mesalkin, 
Ya. G. Sinai [31] showed that any two Bernoulli shifts are weakly iso­
morphic. 

THEOREM 4 (SINAI). If (X,^, m, (p) is ergodic and 

(5.2) h(q>)^ -tpjlogpj, 
l 

then there is a mapping nfrom X onto the (p l5..., pn)-shift cr, that preserves 
measures such that an = nq>. 

The first use of entropy to completely classify a natural class of trans­
formations was made by R. Adler and myself [3a] in a study of the auto­
morphisms of the 2-torus. A rather complete treatment appeared some­
what later [3b], and I shall content myself with explaining the two key 
ideas in our proof of the fact that two automorphisms of the torus with 
the same entropy are isomorphic. The first was a geometric construction 
of a generating partition that was Markovian, i.e. it established an iso­
morphism between the automorphism and a Markov shift. This idea 
has been carried further by Ya. G. Sinai [32], for Anosov differmorphisms, 
R. Bowen [6] for Axiom A diffeomorphisms and M. Ratner [24] for 
Anosov flows. The second idea was to establish an isomorphism between 
two Markov shifts with the same entropy. Here we exploited the special 
form of the Markov transition matrix that was involved to give a coding 
of a combinatorial nature. As I have already indicated this has been 
generalized by N. Friedman and D. Ornstein [8] who showed that any 
Markov shifts with the same entropy are isomorphic. Last year, by 
using results of D. Ornstein in a more direct fashion, Y. Katznelson [14] 
was able to generalize our theorem to automorphisms of the torus in 
any number of dimensions. 

6. A necessary and sufficient condition for a transformation to be iso­
morphic to a Bernoulli shift Work, in the last few years, on the isomorphism 
problem has been dominated by the astonishing results of D. Ornstein 
[17] - [20]. He developed new techniques that enabled him to show 
—first that B-shifts with the same entropy are isomorphic, and then 
to extend these isomorphism results to wider and wider classes of trans-
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formations. Although we will not be able to give proofs we shall formulate 
some of the results that have already been widely applied. A key notion 
has been that of approximate independence, which we proceed to formu­
late. 

DEFINITION. TWO partitions a and /? are said to be e-independent if 

(6.1) £ \m(At n Bj) - m(^)m(*,-)| S s. 

The relation between entropy and this notion of almost independence 
is provided by the easy 

PROPOSITION. If if (a) - H(a|j8) ^ S then a and p are s{S) independent, 
where e(<5) -* 0 with S. 

Using this it is possible to define what a weakly Bernoulli partition is. 
DEFINITION, a is weakly Bernoulli for a m.p.t. (p if given e there exists a 

K = K(e) such that V" (p~ju is e-independent of VjJ+i* <P~ja for all n. 
Notice that this makes sense even for noninvertible transformations. 

For easy examples of weakly Bernoulli partitions one need look no further 
than aperiodic ergodic finite state Markov chains. To place this notion 
in the framework of the mixing conditions that we discussed in §2 observe 
that for q> to be a ^-automorphism, if a is a generator, it is necessary and 
sufficient that given e, and N there exists a K = K(s, N) such that Vf<p~7'a 
and VJÏÎf+"<p~,/a be e-independent for all n. 

THEOREM 5. (a) If ais a weakly Bernoulli generator for invertible (p then 
q> is isomorphic to any Bernoulli shift having the same entropy as (p. 

(b) In case q> is not invertible, if a is a weakly Bernoulli generator then q>, 
the natural extension of(p9 is isomorphic to any Bernoulli shift with the same 
entropy. 

This is the main result of [8]. I should like to emphasize that these 
techniques do not yield isomorphisms of noninvertible transformations 
qua noninvertible transformations. It is easy to give examples of trans­
formations whose natural extensions are isomorphic but which are not 
isomorphic. For example, it was observed in [9] that the one sided Markov 
chain determined by (J •*), p # q, is not isomorphic to the one sided 
B-shift with probabilities (p, q)9 while it follows from the above theorem 
that their natural extensions are isomorphic. We shall return to this 
point again later. 

In a fascinating continuation of this work, D. Ornstein has actually 
given necessary and sufficient conditions for a transformation to be 
isomorphic to a Bernoulli shift. To formulate this result we need to 
define two metrics on sets of partitions of the form { a, q>~ 1oc9..., <p~w+xa}. 
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The first is denoted by 

/ w - l w - l \ 

(6.2) dl V <p-ja, V fpj 

and is simply the ordinary L1 distance between the distribution of the 
ordered partition VJ - 1 (p~joc The second is 

(6.3) adv-Wo-KW-Wo-1) 
and is defined as 

(6.4) i n f - ^ DfoiA) 
n o 

where the infimum is over all sets {aj and {/?J such that d(Vo-1a£, 
V r V « ) = a rf(Vw

o-%VS-V"^) = 0, and 2)(a?j8) = ^ m ( ^ A ^ ) 
where A denotes symmetric difference. Now a partition a is said to be 
finitely determined for (p if given 6 there exists a 5 and n such that if ^ is 
mixing, h(i//) ^ /i(<p), and ƒ? satisfies 

(i)d(V8-1AV"o-V,W<4 
(2) \h(<p,x)-h(il,J)\<ô, 

then, for a// m, 

(6.5) cl({<p;i}'S,{^i}o)<£-

What this means is that the joint distribution of a finite number of 
<pVs already fixes the entire distribution in some sense. In [18] Ornstein 
proved 

THEOREM 6. (p is a Bernoulli shift if and only if every finite partition is 
finitely determined. 

In particular any factor of a JB-shift is a £-shift, if Tk is a J3-shift so is % 
and so on. It was by using this condition that he was later able to construct 
examples of X-automorphisms that are not J?-shifts. 

7. Recent results and problems. Some idea of the recent activity in the 
subject will now be given by listing some classes of transformations that 
have recently been shown to be isomorphic to Bernoulli shifts. 

(a) f-expansions. Let (p be a piecewise continuous mapping of (0,1) 
into itself satisfying the properties : 

(1) cp is twice differentiable on its intervals of continuity. 
(2) q> maps its maximal intervals of continuity onto (0,1). Such 

transformations are associated with various number theoretical expan­
sions of real numbers, such as the continued fraction expansion. R. Adler 
and I have shown that if (p satisfies the following two conditions then 



1972] THE ISOMORPHISM PROBLEM IN ERGODIC THEORY 681 

there is an invariant measure for cp absolutely continuous with respect 
to Lebesgue measure and the natural extension of cp with respect to this 
measure is isomorphic to any Bernoulli shift with the same entropy. 
The two conditions are 

(a) for some fc, \d(pk(x)/dx\ ^ c > 1 where cpk is the /cth iterate of cp; 
(b) sup/ supx yG/ |(p"(x)|/|<p'(.V)2| ^ M, where I ranges over the inter­

vals of continuity of cp. 

The method of proof involves exploiting (b) to control the deviation 
of the iterates of cp from a piecewise linear function. The details will appear 
elsewhere. Related results have been obtained by S. Rudolfer [30]. As 
examples of transformations that satisfy our conditions one can take 
(p(x) = l/xk - n on the interval [(n + 1)"1/k, n~1/fc], k = 1,2,.... The case 
k = 1 corresponds to the continued fraction expansion. 

(b) ^-transformation. Here the mapping is simply cp:[0,1] -> [0,1], 
cp(x) = fix (mod 1) where jS > 1. For ƒ? not an integer the difficulty in 
the analysis of this transformation arises from the fact that (p does not 
map every maximal interval of continuity onto (0,1). Here again R. Adler 
and I, and independently M. Smorodinsky have shown that <p, as a m.p.t. 
with respect to the invariant measure discovered by Renyi [25], that is 
absolutely continuous with respect to Lebesgue measure, is quasi-iso-
morphic to any Bernoulli shift with entropy log /?. 

Since there are values of ƒ? for which it is known that cp is a one sided 
Markov chain, for some values of /? I know that cp is not isomorphic 
to a one sided Bernoulli shift. The corresponding question for/-expansions 
seems to be still wide open. 

(c) Automorphism of nilmanifolds. Here the results are still rather 
fragmentary. By using the methods of Y. Katznelson, I have been able 
to show that a skew product with a Bernoulli shift as a base and ergodic 
automorphisms of the torus on the fibers is isomorphic to a Bernoulli 
shift. Now it is well known that an automorphism of a nilmanifold is 
built up as a finite sequence of skew products with automorphisms of 
tori. The difficulty lies in the fact that the conditions for ergodicity of the 
automorphism do not necessitate the ergodicity of all of the toral auto­
morphisms that occur in building up the manifold automorphism. From 
these remarks the interested reader can easily reconstruct the results 
that I have obtained and since I am not sure how promising this line is 
I will not spell things out anymore. 

(d) Skew products. If cp is a K-automorphism then there is a maximal 
subalgebra such that cp is a Bernoulli shift when we restrict to that sub-
algebra. Hence any X-automorphism can be viewed as a skew product 
with a Bernoulli shift as a base, i.e. a transformation of the form (x, y) -> 
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(ax, (p(x)y) where a : X -* X is a Bernoulli shift and (p(x) is a m.p.t. of Y 
for every x. Thus a natural question is under what circumstances is a skew 
product with B-shift a base again a B-shift We mentioned one such 
result under (c). Another has been obtained by R. Adler and P. Shields [2]. 
It says the following: 

THEOREM 7. Let (X, a) be a Bernoulli shift on two symbols and Y the 
circle. If (p(x)y is defined by 

<p(*)y = y + a if xeAl9 

= y + p if xsAl9 

where (Al9A2) is the independent generator of(X9 a\ and a — Pis irrational, 
then the skew product defined by il/(x9 y) = (ax, (p(x)y) is a Bernoulli shift. 

This result can be extended somewhat by replacing rotations by other 
isometries, but at the present the generalization to functions cp which 
depend on X in a more complicated way seems to be difficult. 

(e) Automorphisms of a solenoid. By using the method of Y. Katznelson 
I have been able to show that the ergodic automorphisms of a solenoidal 
group, that is the dual of a subgroup of the rationals, is a Bernoulli shift. 
Details will appear elsewhere. 

I would like to conclude this report with a few open problems of a 
more general character. 

(1) Replace the powers of a single transformation (p by a group generated 
by several commuting transformations. The model for a Bernoulli shift 
should now be an array xtj of independent identically distributed random 
variables with a horizontal shift and a vertical shift. It is likely that a 
generalization of entropy to such a situation will prove necessary. 

(2) Study what kind of skew products can be Bernoulli shifts if the base 
is given as a JB-shift. Here the following simple example is as yet undecided : 
(X9 a) a B-shift and (Y9 (p) another. 

i//(x9y) = (<rx9<p(x)y) 

where cp(x) = q> or <p_1 depending upon whether xsA1 or A2 where 
(Al9A2) is an independent generator. It is not difficult to show that ij/ 
is a X-automorphism. Is it a JB-shift? 

(3) The explicit codes of [3] and [16] have certain properties that are 
not shared by the general isomorphisms of Ornsteia Is there some 
stronger notion of isomorphism that underlies this "almost continuous" 
coding? 



1972] THE ISOMORPHISM PROBLEM IN ERGODIC THEORY 683 

(4) The classification of noninvertible transformations qua transfor­
mations and not via their natural extensions is still wide open. Here even 
the problem of endomorphisms of the 2-torus is yet to be settled, namely 
are they isomorphic to one sided B-shifts? I should point out that this is 
not the case for all of the ^-transformations. For particular values of ƒ?, 
I can show that they are not isomorphic to one sided B-shifts. Recently 
some striking examples of the type of phenomenon that can occur have 
been discovered by Parry and Walters [23]. 

ADDED IN PROOF. Problem (1) has been settled by Y. Katznelson and 
myself in a forthcoming paper entitled Commuting of measure preserving 
transformations, Israel J. Math. Similar results have been obtained by 
J.-P. Thouvenot based on work of J. P. Conze. 
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