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Let M be a surface immersed in a Riemannian manifold JRm of dimen
sion m. Let D denote the covariant differentiation of Rm and n be a normal 
vector field on M. If we denote by D*n the normal component of Dn9 

then D* defines a connection in the normal bundle. A normal vector field 
n is called parallel if D*n = 0. 

Let H and h denote the mean curvature vector and the second funda
mental form of M in Em. It is easy to see that minimal surfaces of a eucli-
dean m-space ET1 and minimal surfaces of hyperspheres of ET are surfaces 
of ET with parallel mean curvature vector, i.e. D * H = 0. On the other 
hand, for any analytic function q> # 0 of z = u + iv9 defined in a neigh
borhood of the origin in the (M, t;)-plane, and constants a, /? with a > 0, 
Hoffman [3], [4] proved that, up to euclidean motions and isothermal 
coordinate E(u9v\ locally there exists one and only one surface in F \ 
denoted by M(q>9 a, j8), with parallel mean curvature vector H such that 
a = \H\9 and <p = <p3, fl<p = <p4 where <p3 and <p4 are given in the Lemma 
of [3]. These surfaces are easy to check that they are contained in either 
an affine 3-space or an ordinary 3-sphere of ET1 and they are neither 
minimal surfaces in ET1 nor minimal surfaces of hyperspheres of £m. 
Hence, the following problems seem to be interesting. 

Problem I. Let M be a surface immersed in a euclidean m-space JE™ 
with parallel mean curvature vector. If M is neither a minimal surface of 
Em nor a minimal surface of a hypersphere of JEm, is M contained either 
in an affine 3-space of Em or in an ordinary 3-sphere of £m? 

Problem II. If the answer to Problem I is in the affirmative, is M given 
locally by one of the surfaces M(q>9 a, /?)? 

The main purpose of this paper is to announce the following results. 
The details will appear elsewhere. 

THEOREM I. The answer to Problem I is in the affirmative. 

THEOREM II. The answer to Problem II is in the affirmative. 

From theorem I we have the following corollaries. 

COROLLARY 1. Let M be a surface immersed in an m-sphere SP with 
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parallel mean curvature vector. If M is neither a minimal surface ofS™ nor 
a minimal surface of a small (m — 1)-sphere ofSm, then M must be a surface 
in a (small or great) 3-sphere of S"1 with constant mean curvature. 

This corollary follows immediately from Theorem I by imbedding Sm 

as a hypersphere of Em+1. 

COROLLARY 2. Let M be a compact surface in ET with parallel mean 
curvature vector and vanishing Gauss curvature. Then M is a product 
surface of two plane circles. 

This corollary follows immediately from Theorem 1 of [2] and a result 
of Lawson [5]. 

COROLLARY 3. Let M be a complete surface in E" with parallel mean 
curvature vector. If the Gauss curvature does not change sign, then M is 
one of the following surfaces: 

(i) a minimal surface ofEm, 
(ii) a minimal surface of a hypersphere ofEm, 

(iii) a product surface of two plane circles, or 
(iv) a product surface of a straight line and a plane circle. 

This corollary follows immediately from Theorem 2 of [3] and 
Theorem I. 

Theorem II follows from Theorem I and the construction of M{(p, a, /?) 
and Theorem I is based on the following lemmas. 

LEMMA 1. Let M be a surface immersed in ET with parallel mean curvature 
vector and let RN be the curvature tensor of the normal bundle. If H # 0, 
then either M is a minimal surface of a hypersphere of EI*1 or M has vanishing 
normal curvature tensor, i.e. RN = 0. 

LEMMA 2. Let M be a surface in F" with parallel mean curvature vector 
and vanishing normal curvature tensor. Then M is contained in an affine 
A-space ofEm. 
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