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In this paper we shall give very simple relations which define those 
division algebras contained in the Schur subgroup of the Brauer group of 
a field F of characteristic zero. 

Any irreducible representation of a finite group over a field of charac­
teristic zero corresponds to a simple component 81 in the group algebra 
over that field The character afforded by the representation will have as 
constituent an irreducible complex character %, and the center F of 91 
will contain the values of % on the group. Decompose SI as D®9W, where 
D is a division algebra and 3K is a full matrix algebra, both with center F. 
All of the finite-dimensional division algebras with center F form an 
Abelian group, called the Brauer group of F. Those division algebras 
obtained by the method just described form a subgroup, the Schur sub­
group of F. The dimension of D over F is the square of an integer m which 
is called the Schur index of/. It has recently been proved by M. Benard and 
M. Schacher [2] that F contains the mth roots of unity. The purpose of 
this note is to draw attention to the following interesting consequence of 
this result. 

THEOREM. Let $ be the division algebra appearing in the factorization of a 
simple component of the group algebra of a finite group over a field of 
characteristic zero. Then £ is generated over its center F by elements A 
and B satisfying the relations 

(1) A'1B'1AB = 8, 
(2) AmeF, 
(3) BmeF9 

where m is the index of D and s is a primitive mth root of unity. 

The fields K = F(A) and L = F(B) are pure maximal subfields of D 
which are normal extensions of F with cyclic Galois group. 

We begin our proof with the observation that there is a division algebra 
Do in the rational group algebra such that S = D0 ® F. This is a tensor 
product over the center Q(x) of D0 where x is some irreducible complex 
character afforded by the group. The fundamental structure theorem [1, 
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Theorem 32, p. 149] asserts that î)0, a rational division algebra, contains 
a maximal subfield which is a normal extension of Q(x) and has a cyclic 
Galois group over Q(x). Therefore D contains a maximal subfield K which 
is a normal extension of F of dimension m, with a cyclic Galois group 
over F. From field theory, we know K is a simple extension of F, obtained 
by the adjunction of a single element a to F. 

Since F contains a primitive mth root of unity e, a fundamental result 
in Galois theory asserts that K is a pure extension of F. To recall a proof 
of this result, suppose cr generates the Galois group of K over F. For each 
power a1 of a, form the Lagrange resolvent 

At = a* + (a ' fs - 1 + ( a ' fV 2 + . . . + (a*/""1 e'^'^. 

It can be shown that for some integer i, At is not zero. Call this A{ — A. 
From the definition of A we have 

A* = i4& 

From this it follows that A has m distinct conjugates under the powers 
of cr, and therefore A generates K over F. The norm of A with respect to a is 

AAM*2 --A0""1 = yl^8^82 • • • Asm-1 

__ j m „ l + 2 + ••• +m-l 

= y d m g m ( m - 1 ) / 2 — -{-A™. 

Since this product is fixed under a, we conclude Am e F. Thus K = F(A) 
is a pure, cyclic normal extension of F. 

We next show the existence of an element B in X) for which B~XAB = 4* 
or 

(1) ^ - ^ " M B = «. 

This follows from two theorems about simple algebras. The first [1, 
Theorem 14, Lemma 2, p. 55] implies that the automorphism a of K can 
be extended to an automorphism of D. The Skolem-Noether theorem 
[1, Theorem 5, p. 51] which asserts that any automorphism of D is inner 
proves the existence of B. 

Since FT centralizes K, a maximal subfield, K must contain Bm. Since 
F" is centralized by B, it is invariant under G and must lie in F. We may 
invert the relationship (1) to get 

A~lBA = Be"1. 

Therefore conjugation by A is an automorphism of the field L = F(B) of 
order m fixing F. Hence the dimension \_L:F~\ is at least m. However m 
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is the maximum possible dimension of a subfield of D over F. Thus L is a 
maximal subfield of D of dimension m over F, hence a normal extension 
of F. We have now shown that K and L are pure maximal subfields of D 
which are normal, cyclic extensions of F. 

The proof that the mth roots of unity lie in F given in [2] makes use of a 
partial result proved by the author in [3]. An elementary and very elegant 
short proof of this result has just been given by G. J. Janusz [4]. 
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