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1. Introduction. Let P(x, D) be a linear partial differential operator of 
order m with complex-valued coefficients defined and analytic in an open 
connected set Q in Rn, 

(1) P(*,D)= X a\x)D\ 
l«l ^ m 

with the usual notation. The principal part Pm(x, D) is the homogeneous 
part of P(x,D) of order m. At a fixed point xeQ, the (real) zeroes of 
Pm(x9 Ç) form a cone in Rn which is called the (real) characteristic cone of 
P(x, D) at x. We will denote by se the ring of real-valued analytic functions 
inQ. 

In this paper we consider partial differential operators having the 
following property: There exist r analytic vector fields in fi, 

(2) 4 = î f l j A , J = l , . . . , r , 

with djSstfJ — 1 , . . . , n, j = 1 , . . . , r, such that at each point of Q the 
characteristic cone of P(x9 D) is orthogonal to every Ay More precisely, 
we assume that, for every x e Q, 

(3) PJpcQ = 0, ÇeR»^ t 4(*)£ = 0, j = l , . . . ,r. 
£ = 1 

We will denote by &(Al9..., Ar) the Lie algebra generated by Au..., An 

i.e. the smallest set of analytic vector fields in Q which is closed under the 
operations of taking brackets and linear combinations with coefficients 
in se. 

According to a theorem of Nagano [1], the Lie algebra ^(Al9 ...9Ar) 
defines a unique partition of Q into maximal integral manifolds of 
J§? {Ay,..., Ar\ that is, Q is the disjoint union of maximal integral manifolds 
of J5f(v4i,..., Ar). This partition is called a foliation and each maximal 
integral manifold is called a leaf of the foliation. 
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In this paper we prove that the zeroes of solutions of the equation 
P(x9 D)u = 0 propagate along the leaves of the foliation defined by 
&(Al9..., Ar). More precisely let M be a distribution solution of P(x, D)u 
= 0 in Q and suppose that u vanishes in an open neighborhood of a point 
xefl. Then u also vanishes in an open neighborhood of every point of the 
leaf through x of the foliation defined by J?(Al9..., Ar). 

This result includes the well-known result on the propagation of zeroes 
of solutions of elliptic equations. It includes also the result of Bony [2] 
concerning degenerate elliptic second order equations and the result of 
Zachmanoglou [3] concerning first order equations with complex-valued 
coefficients. 

2. Some results on foliations. The bracket of two vector fields A and B 
is the commutator \_A9 E] = AB — BA. If A and B have analytic coeffi
cients in Q, then \_A9 E] is also a vector field with analytic coefficients in Q. 
The (real) vector space of all real analytic vector fields in Q, equipped with 
the bracket operation, is a Lie algebra denoted by if(Q). It is also a 
module over the ring s/. st(Au..., Ar) will denote the smallest j^-sub-
module of if(Q) containing the vector fields Al9...9Ar.A vector subspace 
of JS?(Q) which is closed under the bracket operation is a Lie subalgebra 
of if(Q). &(Al9..., Ar) is the smallest j/-submodule and Lie subalgebra 
of if(Q) containing Al9...9Ar. 

Let S£ be a vector subspace of if(Q). For any xefl we set if(x) 
= {A(x):Ae£?}. ££{x) is a subspace of Rn and is called the integral 
element of if at x. An integral manifold N of J§? is a connected submanifold 
of Q such that, for every x e N9 the tangent space to N at x is equal to <£(x). 

THEOREM 1 (NAGANO). If i£ is a Lie subalgebra of JSf(Q), then through 
every point xeQ passes a maximal integral manifold Uof £P. Any integral 
manifold of JSf containing x is an open submanifold of Lx. 

According to Theorem 1, if defines a unique partition of Q by maximal 
integral manifolds of if (that is, Q is the disjoint union of maximal 
integral manifolds of !£\ This partition of Q will be called the foliation 
defined by 5£ and each maximal integral manifold will be called a leaf of 
the foliation. Note that, for every x € Q, the dimension of the leaf Lx 

containing x is equal to the dimension of the integral element ££{x). 
With the additional assumption that dim if (x) is constant in Q, 

Theorem 1 is the classical theorem of Frobenius (see Chevalley [4]). 
However, the Frobenius theorem is also valid in the C00 case. Theorem 1 
was proved by Nagano [1] and it is not generally valid in the C00 case. 

An integral curve of an analytic vector field, say A = £ alDi9 is a 
solution x = x(t) of the system 
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dxi/dt — al(x), i = 1, . . . , n. 

A trajectory of a collection ^ of analytic vector fields in Q is a continuous, 
piecewise analytic curve in Q, each analytic piece of which is an integral 
curve of a member of #. 

THEOREM 2 (CHOW-HERMANN). Let & be a (real) vector subspace of 
JSf(Q) and suppose that the smallest sé-submodule and Lie subalgebra of 
S£(Q) containing J£? is equal to JSf (Q). Then, for every point x e Q, the set 
of points ofQ that can be connected to x by trajectories of S£ is equal to Q. 

A weaker form of this theorem was first proved by Chow [5]. A proof 
of Theorem 2 (with Q being any differentiable manifold) is given in the 
book of Hermann [6, Chapter 18]. Incidentally Theorem 2 is also valid 
in the C00 case. 

We apply now Theorem 1 to the Lie subalgebra ^(?(A1,...9Ar). The 
leaf of its foliation passing through the point x will be denoted by 
Lx(Al,...,Ar). We also apply Theorem 2 to the vector subspace 
sé(AY,..., Ar) of J£?(Q). By restricting to the leaf LX(AU..., Ar) Theorem 2 
yields 

THEOREM 3. Let x be any point ofÇl The set of points ofQ that can be 
connected to x by trajectories of s/(Al9.. .,Ar\

 ïS equal to the leaf 
L (Al9..., Ar\ 

3. The propagation of zeroes. 

LEMMA 1. Let A = £"= \_alD{ be an analytic vector field in Q such that 
at each point of Q the characteristic cone of P(x, D) is orthogonal to A, 
that is, for every x € Q, 

Pm(x,£) = 0, ÇeR"^ ia*(xX;, = 0. 
i=l 

Let u be a distribution solution of P{x, D)u = 0 in Q and suppose that u 
vanishes in an open neighborhood of some point xofQ. Then u vanishes in 
an open neighborhood of every point of the integral curve of A passing 
through x. 

The proof of this lemma consists of locally straightening out the vector 
field A and applying Theorem 1 of [7] concerning the propagation of 
zeroes of solutions of partial differential equations with flat characteristic 
cones. Theorem 1 of [7] was proved using Holmgren's uniqueness theorem 
as extended to distribution solutions by Hörmander [8] and a method 
first used by John [9]. 
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It follows immediately from Lemma 1 that a solution of P(x9 D)u = 0 
which vanishes in a neighborhood of any point x e Q also vanishes in a 
neighborhood of every point of a trajectory of s/(Ai9. ..9Ar) containing x. 
Combining this with Theorem 3 we obtain the main result of this paper. 

THEOREM 4. Let P(x9 D) be a partial differential operator with analytic 
coefficients in an open connected set Q of Rn. Suppose that there are r analytic 
vector fields Al9...9ArinQ such that at each point of CI the characteristic 
cone of P(x9D) is orthogonal to every Aj9 i.e. for every xeQ condition (3) 
is satisfied. Let ubea distribution solution ofP(x9 D)u = OinQ and suppose 
that u vanishes in an open neighborhood of some point xeQ. Then u vanishes 
in a neighborhood of every point of the leaf I?{Al9..., Ar) of the foliation 
defined by S£{A±,..., Ar). 

COROLLARY 1. Under the assumption of Theorem 4 and if, in addition, 
at every point ofQ the dimension of the integral element of ££{AU..., Ar) 
is equal to n9 then every solution ofP(x9 D)u = 0 vanishing in a neighborhood 
of a point ofQ must vanish in the whole ofQ. 

4. Some examples. If P(x, D) is an elliptic operator in Q, then, by 
definition, for every x G (2, 

Pm(x,i) = 0, ÇeRnol; = 0. 

In this case we can take A} = Dp j = 1,...,n. We have JSf(I>1,...,Dn) 
= jSf(Ü) and its foliation consists of a single leaf, the whole of Q. Hence any 
solution of P(x9 D)u = 0 vanishing in a neighborhood of a point of Q 
must vanish in the whole of Ü. 

The operators studied by Bony [2] are of the form 

P{x,D)= £ A) + B + c 
J = I 

where Au..., Ar and B are real first order operators with analytic coeffi
cients in Q. At every point of Q the characteristic cone is orthogonal to 
the vector fields Al9...9Ar. Under the assumption that the dimension 
of the integral element of &(Al9..., Ar) is equal to n at every point of Q, 
Bony showed that any solution of P(x9 D)u = 0 vanishing in a neighbor
hood of a point of Q must vanish in the whole of Q. This of course is 
precisely the assertion of Corollary 1. 

A first order operator with complex-valued coefficients is of the form 

P{x9 D) = A + iB + c 

where A and B are real first order operators. The characteristic cone is 
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orthogonal to the vector fields A and B. The propagation of zeroes and 
uniqueness in the Cauchy problem for this operator were studied in [3]. 
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