
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 78, Number 5, September 1972 

CHARACTERIZING SHAPES OF COMPACTA 

BY T. A. CHAPMAN1 

Communicated by Steve Armentrout, October 18, 1971 

ABSTRACT. In this note we announce a characterization of Borsuk's 
concept of shape for finite-dimensional compact metric spaces. Let 
X, Y be compact subsets of some Euclidean space E1 such that (1) 
X lies in some Euclidean subspace of E" having codimension at least 
2 dim X + 1 and (2) Y lies in some Euclidean subspace of E1 having 
codimension at least 2 dim F + 1. Then n can be chosen large enough 
(and dependent only on dim X, dim Y) such that the following is true: 
X and Y have the same shape iff E?\X and En\ Y are homeomorphic. 
We also discuss the relationship of this result to previously known 
characterizations of shape. 

1. Introduction. The objective of this note is to announce a characteriza
tion of shape (as introduced by Borsuk in [4]) for finite-dimensional com
pact metric spaces in terms of the homeomorphism types of the comple
ments under stable embeddings in large-dimensional Euclidean spaces. 
The precise statement is given in §4 and the details of its proof will appear 
elsewhere [9]. This result confirms an informal conversational conjecture 
of Morton Brown concerning the geometric intuition about what shape 
ought to mean. It and a companion earlier result of the author [6] cited 
in §3 below give easily stated characterizations of shape. They also put 
the study of shape in the point-set (homeomorphism) domain as distinct 
from the homotopy domain of the definition of Borsuk and of the charac
terization of Mardesic and Segal cited in §3 below. 

In §2 we make some intuitive comments concerning shapes of compact 
metric spaces (compacta) without actually giving any definitions. This 
section is intended only for those readers not familiar with shape theory. 
In §3 we cite some other instances in which shapes of compacta have 
been characterized by using approaches quite different from that of 
Borsuk who views shape as a generalization of homotopy type to non-
ANR's (metric). The notation 

Sh(X) * Sh(Y) 

will be used to indicate that compacta X and Y have the same shape. 

2. Intuitive shape theory. The term shape theory actually refers to an 
entire category of objects (compacta) and morphisms (which we shall not 
specify), but we are only interested here in the equivalence relation 

AMS 1969 subject classifications. Primary 5540; Secondary 5478. 
Key words ana phrases. Shape, ANR, Hubert space, Hubert cube. 
1 Supported in part by NSF Grant GP-28374. 

Copyright © American Mathematical Society 1972 

847 



848 T. A. CHAPMAN [September 

Sh(X) = Sh(Y) (for compacta X and Y) which one introduces into this 
category in much the same way that homotopy equivalence is introduced 
into the category of topological spaces and maps. 

Roughly speaking this concept enables one to compare global proper
ties of compacta, while virtually ignoring their local properties. For 
example the pseudo-arc has the shape of an arc. Also the Warsaw circle 
has the shape of a circle, where by the Warsaw circle we mean the com-
pactum in E2 which is the union of the compactum 

A = ({0} x [-1,1]) u {(x, sin(l/x))|0 < x ^ 2/n} 

and an arc which has endpoints (0,0), (2/n, 1) and which intersects A 
only in these points [5]. 

If X and Y are compacta which are homotopy equivalent, then Sh(X) 
= Sh( Y). Also if X and Y are compact ANR's, then X and Y are homotopy 

equivalent iff Sh(Z) = Sh( Y) [4]. Thus if compacta have the same shape 
and sufficient local structure, then they are also homotopy equivalent. 
In the above paragraph we have cited two examples of compacta which 
have the same shape but which are not homotopy equivalent. 

In order to define what it means for compacta X and Y to have the 
same shape (using Borsuk's approach [4]), one considers X and Y as 
subsets of Hilbert space l2 (or the Hilbert cube Q) and then requires that 
there exist sequences of approximative maps of X towards Y and Y 
towards X which satisfy certain homotopy properties and are defined on 
appropriate (systems of) neighborhoods of these sets. We shall not be 
more precise than this and we only remark (as in §1) that this definition 
succeeds in generalizing the notion of homotopy equivalence to non-
ARN's. Using this approach Borsuk and a number of colleagues and 
students have been able to obtain analogues of many fundamental 
concepts of homotopy theory. Most of the results appear in Fundamenta 
Mathematicae or the Bulletin of the Polish Academy of Sciences. 

3. Alternate approaches to shape. In [13] Mardesic and Segal introduced 
an alternate approach to shape theory which, like the author's, is equiv
alent to Borsuk's. Roughly their idea is to consider compacta represented 
as inverse systems of compact ANR's. They replace the approximative 
maps of Borsuk by maps between inverse systems, where the usual com-
mutativity of diagrams is replaced by homotopy commutativity. In this 
approach compacta need not be considered in terms of embeddings in 
Hilbert space or the Hilbert cube, and there is complete freedom in the 
choice of such expansions of a given compactum. It is not surprising 
that such a substantially different viewpoint of shape theory has proven 
quite effective in dealing with shape problems (see [12] for one of a number 
of papers on the subject). 
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In [10] D. W. Henderson used some recent results in the topology of 
infinite-dimensional Hilbert manifolds to obtain some results in shape 
theory. In particular he characterized those compacta which have the 
shape of a point by showing that a compactum X c l2 satisfies Sh(X) 
= Sh({point}) iff the quotient space l2/X is homeomorphic to l2 (where 
l2/X is the quotient space of l2 by the decomposition whose only non-
trivial element is X). 

In [6] the author used a different infinite-dimensional approach to 
obtain necessary and sufficient conditions in order for two compacta to 
have the same shape. Since this characterization is similar to (and to some 
extent motivates) the finite-dimensional characterization cited in §4 below, 
we state it. Let the Hilbert cube Q be represented by f]£L Ji9 where each It 

is the closed interval [0,1], and let 5 denote the pseudo-interior of g, 
i.e., s = Y\?L JÏ, where each 1° is the open interval (0,1). The main result 
of [6] is a follows : 

If X, Y a s are compacta, then Sh(X) = Sh(Y) iff Q\X and Q\Y are 
homeomorphic. 

We remark that a condition like X, Y a s is crucial and in general 
cannot be replaced by the weaker condition I , 7 c Q , Also it follows 
from [1] that for any compacta I J c s , s\X and s\Y are always 
homeomorphic. For possible easier geometric intuition one may replace 
the condition X, Yc s by the known equivalent condition I J c W9 

where W= {(x,)eg|*i = !}• 
Using this characterization and some basic techniques from infinite-

dimensional topology, it is possible to obtain some results in pure shape 
theory apparently not accessible from the other theories as well as to give 
alternative (and shorter) proofs of several of the basic theorems (see [2], 
[7], and [8]). 

4. Statements of results. For the finite-dimensional characterization we 
first need a definition. A compactum X in Euclidean space En is said to 
be stably embedded provided that X lies in some Euclidean subspace of 
En having codimension at least 2 dim X + 1. It is easy to see that if X 
is stably embedded in En and if En is then identified with some Euclidean 
subspace of Em, then X is also stably embedded in Em. Using a result of 
Klee [11] it follows that if X is a compactum and X', X" <= En are stably 
embedded copies of X, then there exists a homeomorphism of En onto 
itself taking X' onto X'\ Thus all stably embedded copies of a given 
compactum in an Euclidean space are equivalent. 

THEOREM [9]. For each integer m > 0 there exists an integer n{m) > 0 
such that the following property is satisfied: IfX9 Y cz En are stably embed
ded compacta such that dim X, dim Y ^ m and n ^ n(m\ then Sh(X) 
= Sh( Y) iffEn\X and En\Y are homeomorphic. 
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Moreover in the only if part of the Theorem, the homeomorphism can 
be constructed to be the identify off of any topological n-cell containing 
l u 7in its interior. We also remark that we can always choose 

n(m) = 3m + 3, 

but this number is the result of several calculations and can very probably 
be reduced. 

In the proof of the infinite-dimensional characterization of [6], cited in 
§3 above, some recent results in infinite-dimensional manifolds modeled 
on Q were used. The proof of the Theorem above (as given in [9]) has the 
same broad outline as the proof in [6], but the details of the argument 
are largely different because of the lack of suitable finite-dimensional 
analogues of certain infinite-dimensional techniques. 

In an analogous fashion one can define what it means for a compactum 
to be stably embedded in the n-sphere Sn and obtain the following result 
directly from the Theorem. 

COROLLARY 1. For each integer m > 0 there exists an integer n(m) > 0 
such that the following property is satisfied: IfX, Y cz Sn are stably embed
ded compacta such that dim X9 dim Y ̂  m and n ^ n{m\ then Sh(Z) = 
Sh(Y) iffSn\X and Sn\Y are homeomorphic. 

In the Theorem above it should be noted that merely assuming the 
codimension to be large will not generally suffice. For example in any 
Euclidean space Ew, n ^ 3, Blankinship [3] has constructed arcs whose 
complements are not simply connected, and therefore cannot be homeo
morphic to the complement of any stably embedded arc. However if the 
compacta are polyhedra, then the wildness exhibited by the Blankinship 
examples cannot occur, and a largeness condition on the codimension 
will alone suffice. But even in such a nice situation the largeness condition 
on the codimension is essential, for Henderson [10] has constructed 
2-dimensional compact polyhedra X9Y cz E3 of different shape for which 
E3 \X and E3 \ Y are homeomorphic. 

The following result is a corollary of the proof of the Theorem above, 
although it is possible to give a shorter more direct proof without even 
defining the notion of shape (as shape and homotopy type agree on 
compact ANR's, and therefore on compact polyhedra). 

COROLLARY 2. For each integer m > 0 there exists an integer n(m) > 0 
such that the following property is satisfied : If X,Y c En are compact 
polyhedra such that dim X, dim Y^m and n ^ rt(m), then X and Y are 
homotopy equivalent iffEn\X and En\Y are homeomorphic. 

ADDED IN PROOF. In a forthcoming paper, Concerning the shapes of 
finite-dimensional compacta, R. Geoghegan and R. Summerhill have 
obtained a result which generalizes the above Theorem. 
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