THE SPECTRAL MAPPING THEOREM IN SEVERAL VARIABLES

BY ROBIN HARTE

Communicated by Robert G. Bartle, February 11, 1972

- 1. Introduction. In this note we introduce a "joint spectrum" for systems of Banach algebra elements, one which reduces to the classical "spectrum" for a single element, and which is subject to the "spectral mapping theorem for polynomials" when the elements of the system commute with one another. In contrast to the known result for a commutative algebra, which we generalise, the proof is comparatively elementary: we need only the argument from Liouville's theorem which says that the spectrum of a bounded linear operator on a nontrivial Banach space is not empty.
- 2. The joint spectrum. If A is a complex linear algebra, with identity 1, and if $a = (a_1, a_2, ..., a_n)$ is an *n*-tuple of elements of A, then the joint spectrum of a with respect to A is to be the set of n-tuples $s = (s_1, s_2, ..., s_n)$ of complex numbers for which the system $a s = (a_1 s_1, a_2 s_2, ..., a_n s_n)$ generates a proper left or right ideal in A. Formally

(2.1)
$$\sigma(a) = \sigma_A^{\text{joint}}(a) = \sigma_A^{\text{left}}(a) \cup \sigma_A^{\text{right}}(a)$$

is the union of the "left" and "right" spectrum, where

(2.2)
$$\sigma_A^{\text{left}}(a) = \left\{ s \in C^n : 1 \notin \sum_j A(a_j - s_j) \right\}$$

and

(2.3)
$$\sigma_A^{\text{right}}(a) = \left\{ s \in C^n : 1 \notin \sum_j (a_j - s_j) A \right\}.$$

For example, if the algebra A is a commutative Banach algebra, it is the Gelfand theory that, if $a = (a_1, a_2, \ldots, a_n)$,

$$(2.4) \sigma_A^{\text{left}}(a) = \sigma_A^{\text{right}}(a) = \{ (\varphi(a_1), \varphi(a_2), \dots, \varphi(a_n)) \colon \varphi \in \Phi \},$$

where Φ is the "maximal ideal space" of A: this is the usual definition for a commutative algebra [3]. If A is the algebra of bounded linear operators on a complex Hilbert space E, and $T = (T_1, T_2, \ldots, T_n)$, then it turns out ([2], [3], [4]) that

AMS 1970 subject classifications. Primary 47D99, 46H99; Secondary 47A10, 47A60. Key words and phrases. Joint spectrum, spectral mapping theorem, Banach algebras, polynomial in several variables, normal operator on Hilbert space.

(2.5)
$$\sigma_A^{\text{left}}(T) = \left\{ s \in C^n : \inf_{\|x\| = 1} \sum_j \|(T_j - s_j)x\| = 0 \right\}$$

is the set of "simultaneous approximate eigenvalues" of the system, while

(2.6)
$$\sigma_A^{\text{right}}(T) = \left\{ s \in C^n : \sum_j (T_j - s_j) E \neq E \right\}.$$

In general the joint spectrum $\sigma(a)$ of an arbitrary system $a \in A^n$ of Banach algebra elements is a compact subset of C^n : for the inclusion

$$(2.7) \sigma(a) \subseteq \sigma(a_1) \times \sigma(a_2) \times \ldots \times \sigma(a_n)$$

guarantees that it is bounded; to see that it is also closed, suppose that $s \in C^n$ is not in $\sigma(a)$. There are therefore systems $a' \in A^n$ and $a'' \in A^n$ for which

(2.8)
$$\sum_{i} a'_{i}(a_{i} - s_{i}) = \sum_{i} (a_{i} - s_{i})a''_{i} = 1;$$

now if the system $s' \in C^n$ is so close to s in C^n that

$$\sum_{j} \|a'_{j}\| |s'_{j} - s_{j}| < 1$$
 and $\sum_{j} \|a''_{j}\| |s'_{j} - s_{j}| < 1$

then each of the elements $\sum_j a'_j(a_j - s'_j)$ and $\sum_j (a_j - s'_j)a'_j$ is invertible in A, which excludes s' from $\sigma(a)$.

Even in the very simplest situations, the joint spectrum is liable to be empty: in the algebra A of complex 2×2 matrices take $a = (a_1, a_2)$ with

$$(2.9) a_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, a_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

It is clear from (2.7) that the only possible point of the spectrum is (0, 0): but $a_2a_1 + a_1a_2$ is the identity matrix.

3. The spectral mapping theorem. In a complex linear algebra A, for an arbitrary system $a = (a_1, a_2, \ldots, a_n)$ of elements and a system $f: A^n \to A^m$ of "polynomials in n variables on A," there is inclusion

$$(3.1) f\sigma(a) \subseteq \sigma f(a).$$

To interpret this, we shall regard a "polynomial" as one of the mappings from A^n into A in the linear algebra generated by the scalar constants $s: (a_1, a_2, \ldots, a_n) \to s$ and the co-ordinates $z_j: (a_1, a_2, \ldots, a_n) \to a_j$ $(j = 1, 2, \ldots, n)$. Systems $f = (f_1, f_2, \ldots, f_m)$ of these polynomials are identified with the corresponding mappings of A^n into A^m ; restricted to the scalar systems $C^n \subseteq A^m$, such a mapping then reduces to a system of numerical polynomials.

The proof of the "one-way spectral mapping theorem" (3.1) is a matter of the "remainder theorem" for the polynomials $f_k: A^n \to A$: if $a \in A^n$ and $s \in C^n$ are arbitrary then

(3.2)
$$f_k(a) - f_k(s) \in \sum_i A(a_i - s_i)$$
 and $f_k(a) - f_k(s) \in \sum_i (a_i - s_i)A$.

This is easily built up for sums of products of constants and co-ordinates. Now argue that if $s \in C^n$ and f(s) is not in $\sigma f(a)$, s cannot be in $\sigma(a)$.

In general we cannot expect equality in (3.1): indeed as in (2.9) whenever the spectrum of a system $a \in A^n$ is empty, and $f = f_1 : A^n \to A$ is one polynomial, then

$$(3.3) f\sigma(a) = \emptyset \neq \sigma f(a).$$

The argument in the other direction, for commuting systems of Banach algebra elements, is extracted from Bunce [2, Proposition 1]:

LEMMA. In a complex Banach algebra A with identity, suppose that $b \in A^m$ is an arbitrary system of elements, and that $a \in A^n$ is a commuting system of elements commuting with the elements of b. Then for every point t in $\sigma(b)$ there is $s \in C^n$ for which (s, t) is in $\sigma(a, b)$.

PROOF. We carry out the argument for the "left" spectrum (2.2), in the case n=1 of a single element $a=a_1$ commuting with the system $b \in A^m$. If $t \in C^m$ is in $\sigma_A^{\text{left}}(b)$ then the closed left ideal

$$(3.4) N = \text{closure } \sum_{k} A(b_k - t_k)$$

is proper in A: consider the closed subspace

(3.5)
$$M = \{c = c_1 \in A : (b_k - t_k)c \in N (k = 1, 2, ..., m)\}.$$

The subspace M contains the ideal N, as well as the element 1 which is excluded from N: thus the quotient space M/N is nontrivial. While M is not in general an ideal, there is an inclusion $aM \subseteq M$ whenever $a = a_1$ commutes with each of the elements b_k . For suppose $c \in M$. Then, for each $k = 1, 2, \ldots, m$,

$$(b_k - t_k)ac = a(b_k - t_k)c \in aN \subseteq N.$$

Consider the operator L_a : $c + N \rightarrow ac + N$ ($M/N \rightarrow M/N$). By the usual argument from Liouville's theorem [5, Theorem 67A] the spectrum of L_a is not empty. Further, for every element $s = s_1$ of the topological boundary of this spectrum, the operator $L_a - sI$ has an "approximate eigenvector" in the space M/N [5, Theorem 66B]:

(3.6)
$$\inf_{\|c+N\|=1} \|(a-s)c+N\| = 0.$$

The usual argument actually furnishes a sequence (T_n) of operators on M/N for which $||T_n|| = 1$ and $||(L_a - s)T_n|| \to 0$: but these are readily converted to vectors $c_n + N$. We claim that for every such point s, the (m+1)-tuple (s,t) is in the left spectrum $\sigma_A^{\text{left}}(a,b)$: indeed if, to the contrary, there are a' and b'_k for which $a'(a-s) + \sum_k b'_k (b_k - t_k) = 1$ then, for arbitrary c in M,

$$c = a'(a-s)c + \sum_{k} b'_{k}(b_{k}-t_{k})c \in a'(a-s)c + N.$$

It follows that $||c + N|| \le ||a'|| ||(a - s)c + N||$, which is incompatible with (3.6).

The "spectral mapping theorem" follows at once:

THEOREM. If $a \in A^n$ is a commuting system of elements of a complex Banach algebra A with identity, and if $f: A^n \to A^m$ is a system of polynomials, then the spectrum $\sigma(a)$ is not empty, and there is equality $\sigma f(a) = f\sigma(a)$.

PROOF. With $b = f(a) \in A^m$ it is the Lemma that for each point t in $\sigma(b)$ there is $s \in C^n$ for which $(s, t) \in C^{n+m}$ is in $\sigma(a, f(a))$. By a trivial application of (3.1) it is clear that s must be in $\sigma(a)$; we claim that also t = f(s). For consider the system of polynomials $g: (a, b) \to b - f(a)$ $(A^{n+m} \to A^m)$. By (3.1),

$$t - f(s) = g(s, t) \in g\sigma(a, f(a)) \subseteq \sigma g(a, f(a)) = \sigma(0) = \{0\}.$$

This is the second part of the statement; the first is obvious, and can be derived from (3.3).

4. Normal operators. If $T = (T_1, T_2, ..., T_n)$ is a commuting system of bounded linear operators on a Banach space then the spectral mapping theorem, with (2.7), gives inclusion

$$(4.1) \sigma f(T) \subseteq f(\sigma(T_1) \times \sigma(T_2) \times \ldots \times \sigma(T_n));$$

just occasionally this may help in the computation of the spectrum of a particular operator. For example if T_2 is quasinilpotent and commutes with T_1 it is a consequence of (4.1) that

$$(4.2) \sigma(T_1 + T_2) \subseteq \sigma(T_1) \subseteq \sigma(T_1 + T_2).$$

For another consequence, suppose that $T = T_1$ is a normal operator on complex Hilbert space: then

(4.3)
$$||T|| = \sup \{|s| : s \in \sigma(T)\}.$$

While the proof of the Lemma has in a sense [1] ruled us "out of court" here, the argument is not without interest. It is clear that $||T||^2 \in \sigma(T^*T)$: for if $||x_n|| = 1$ and $||Tx_n|| \to ||T||$ then $||(T^*T - ||T||^2)x_n||^2 \to 0$ Conclude

$$||T||^2 = ||T^*T|| \le \sup_{s,t \in \sigma(T)} |s| |t^*| = \sup_{s \in \sigma(T)} |s|^2.$$

We have used the fact that the spectrum of T^* is the complex conjugate of the spectrum of T, and applied (4.1) to the product T^*T . If we establish further the inclusion

$$(4.4) \sigma(T, T^*) \subseteq \{(s, s^*): s \in \sigma(T)\}$$

(whether or not T is normal, if $t \neq s^*$ then $(T^* - s^*)(T - sI) + (T - t^*)$ $(T^* - tI)$ is of the form $S^*S + SS^* + kI$ with k > 0, and therefore invertible), then the spectral mapping theorem gives

(4.5)
$$\sigma f(T, T^*) = \{ f(s, s^*) : s \in \sigma(T) \},$$

$$\| f(T, T^*) \| = \sup \{ |f(s, s^*)| : s \in \sigma(T) \},$$

hence the "spectral theorem" for T[1].

Note that it is necessary, for (4.5), that the operator T be normal: for then the hermitian operator $i(T^*T - TT^*)$ has spectrum $\{0\}$ and must be 0.

REFERENCES

- 1. S. J. Bernau, The spectral theorem for normal operators, J. London Math. Soc. 40 (1965), 478-486. MR 31 # 3864.
- 2. J. Bunce, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), 499-505.

 3. L. A. Coburn and M. Schechter, Joint spectra and interpolation of operators, J. Functional Analysis 2 (1968), 226-237. MR 37 #3364.
- 4. R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. (to appear).
- 5. G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill, New York, 1965.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE, CORK, IRELAND