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1. Introduction. In this note we introduce a "joint spectrum" for systems 
of Banach algebra elements, one which reduces to the classical "spectrum" 
for a single element, and which is subject to the "spectral mapping theorem 
for polynomials" when the elements of the system commute with one 
another. In contrast to the known result for a commutative algebra, 
which we generalise, the proof is comparatively elementary: we need 
only the argument from Liouville's theorem which says that the spectrum 
of a bounded linear operator on a nontrivial Banach space is not empty. 

2. The joint spectrum. If A is a complex linear algebra, with identity 1, 
and if a = (al9 al9..., a^ is an n-tuple of elements of A, then the joint 
spectrum of a with respect to A is to be the set of n-tuples s = (Si, s2,..., sn) 
of complex numbers for which the system a - s = (ax - sl9 a2 - s2,..., 
an — sn) generates a proper left or right ideal in A. Formally 

(2.1) a(a) = < * > ) = °A» u <fl*\a) 

is the union of the "left" and "right" spectrum, where 

(2.2) <tf\a) = | s e C : 1 # Ç A(aj » s,-)} 

and 

(2.3) o$*(a) = J s e C": 1 * £ (a, - S)A\. 

For example, if the algebra A is a commutative Banach algebra, it is 
the Gelfand theory that, if a = (au a29..., a„), 

(2.4) <tf\a) = <r7ht(a) = {(<P(ai), <P(a2\ . . . , <p(an)): <pe<£}, 

where O is the "maximal ideal space" of A: this is the usual definition 
for a commutative algebra [3]. If A is the algebra of bounded linear 
operators on a complex Hilbert space £, and T = (Tl9 T29..., 7̂ ,), then 
it turns out ([2], [3], [4]) that 
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(2.5) <tf\T) = {se C : inf £ ||(7} - Sj)x\\ = oj 
C 11*11= 1 J J 

is the set of "simultaneous approximate eigenvalues" of the system, while 

(2.6) <7*ght(T) = | s G Cn: £ (7} - Sj)E * E\. 

In general the joint spectrum a(a) of an arbitrary system aeAn of 
Banach algebra elements is a compact subset of Cn: for the inclusion 

(2.7) a(a) c o ^ ) x a{a2) x ... x a(an) 

guarantees that it is bounded; to see that it is also closed, suppose that 
s e C" is not in a(d). There are therefore systems a' e An and a!' e An for 
which 

(2.8) I«}(a7-Sj) = Z(a J-s JK = l; 
j j 

now if the system s' e Cn is so close to 5 in Cn that 

l m i t ó - s j < l and I K I I | S ; - S , - | < 1 

then each of the elements YJ a'Aaj ~" s}) anc^ X; (aj "~ 5i)aï ^ invertible 
in A, which excludes s' from <r(a). 

Even in the very simplest situations, the joint spectrum is liable to be 
empty: in the algebra A of complex 2 x 2 matrices take a = (al9 a2) with 

(2.9) ai=(°Q J), a2=(j I 
It is clear from (2.7) that the only possible point of the spectrum is (0,0): 
but a2a1 + ala2 is the identity matrix. 

3. The spectral mapping theorem. In a complex linear algebra A, for an 
arbitrary system a = (al9 al9..., a j of elements and a system/: A" -> Am 

of "polynomials in n variables on A," there is inclusion 

(3.1) Ma) s af (a). 

To interpret this, we shall regard a "polynomial" as one of the mappings 
from An into A in the linear algebra generated by the scalar constants s : 
(ai9al9..., an) -> s and the co-ordinates zy. (al9a2, . . . ,«„)-• a$ (ƒ = 1, 
2 , . . . , n). Systems ƒ = (fl9 fl9..., / J of these polynomials are identified 
with the corresponding mappings of An into Am; restricted to the scalar 
systems Cn c ,4W, such a mapping then reduces to a system of numerical 
polynomials. 
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The proof of the "one-way spectral mapping theorem" (3.1) is a matter 
of the "remainder theorem" for the polynomials fk: An -• A: if a e An and 
seCn are arbitrary then 

(3.2) fk(a) - fk(s) e £ A(aj - Sj) and fk(a) - fk(s) e £ (a, - s>4. 
j j 

This is easily built up for sums of products of constants and co-ordinates. 
Now argue that if s e C1 and ƒ (5) is not in af (a), s cannot be in a(a). 

In general we cannot expect equality in (3,1): indeed as in (2.9) whenever 
the spectrum of a system a e An is empty, and ƒ = f : An -• A is one 
polynomial, then 

(3.3) Ma) = 0 ± of (a). 

The argument in the other direction, for commuting systems of Banach 
algebra elements, is extracted from Bunce [2, Proposition 1] : 

LEMMA. In a complex Banach algebra A with identity, suppose that 
beAm is an arbitrary system of elements, and that aeAn is a commuting 
system of elements commuting with the elements of b. Then for every point 
t in <j(b) there is s e C1 for which (s, t) is in a(a, b). 

PROOF. We carry out the argument for the "left" spectrum (2.2), in the 
case n = 1 of a single element a = a1 commuting with the system b e Am. 
lfteCm is in alf\b) then the closed left ideal 

(3.4) N = closure £ A(bk - tk) 

is proper in A: consider the closed subspace 

(3.5) M = {c = cte A: (bk - tk)ce N (k = 1,2,...,m)}. 

The subspace M contains the ideal JV, as well as the element 1 which is 
excluded from N: thus the quotient space M/N is nontrivial. While M 
is not in general an ideal, there is an inclusion aM c M whenever a = at 

commutes with each of the elements bk. For suppose ce M. Then, for each 
k = 1, 2 , . . . , m, 

(bk — tk)ac = a(bk — tk)ceaN e JV. 

Consider the operator Lfl: c + N -» ac + JV (M/N -• M/N). By the usual 
argument from Liouville's theorem [5, Theorem 67A] the spectrum of 
La is not empty. Further, for every element 5 = sx of the topological 
boundary of this spectrum, the operator La — si has an "approximate 
eigenvector" in the space M/N [5, Theorem 66B]: 

(3.6) inf \\(a - s)c + JV|| = 0. 
llc + JV | |= l 
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The usual argument actually furnishes a sequence (T„) of operators on 
M/N for which ||T„|| = 1 and \\{La - s)T„\\ -•(): but these are readily 
converted to vectors cn + N. We claim that for every such point s, the 
(m + l)-tuple (s, t) is in the left spectrum axXu{a, b): indeed ifj to the 
contrary, there are d and b'k for which a\a - s) + £* b'k{bk - tk) = 1 
then, for arbitrary c in M, 

c = a'(a - s)c + YJ K(h - **)c e fl'te - s)c + JV. 

It follows that ||c + JV|| ^ Ha'll ||(a - s)c + N\\, which is incompatible 
with (3.6). 

The "spectral mapping theorem" follows at once: 

THEOREM. If aeAn is a commuting system of elements of a complex 
Banach algebra A with identity, and iff: An -+ Amisa system of polynomials, 
then the spectrum <r(a) is not empty, and there is equality af (a) = fo{a). 

PROOF. With b = f (a) e Am it is the Lemma that for each point t in 
a{b) there is s e C" for which (s, t) e Cn+m is in a(a,f(a)). By a trivial appli­
cation of (3.1) it is clear that s must be in a(a); we claim that also t = f(s). 
For consider the system of polynomials g:(a,b)^> b —f(a) (An+m -• Am). 
By (3.1), 

t -f{s) = g(s,t)ega(a,f(a)) c ag{a,f{a)) = <r(0) = {0} . 

This is the second part of the statement; the first is obvious, and can be 
derived from (3.3). 

4. Normal operators. If T = (Tl9 T2,..., TJ is a commuting system of 
bounded linear operators on a Banach space then the spectral mapping 
theorem, with (2.7), gives inclusion 

(4.1) af(T) c /((T(Ti) x a{T2) x . . . x (x(Tw)); 

just occasionally this may help in the computation of the spectrum of a 
particular operator. For example if T2 is quasinilpotent and commutes 
with Tt it is a consequence of (4.1) that 

(4.2) <7(71 + T2) e (7(7;) c= G{T, + T2). 

For another consequence, suppose that T = 7] is a normal operator on 
complex Hubert space: then 

(4.3) ||T|| = sup {|s|: sea{T)}. 

While the proof of the Lemma has in a sense [1] ruled us "out of court" 
here, the argument is not without interest It is clear that ||T||2 e e(T*T): 
for if | |xj = 1 and ||TxJ -+ \\T\\ then ||(T*T - | | r | | 2 ) x j 2 -• 0 Conclude 
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||T||2 = ||T*r|| g sup |s||t*| = sup |s|2. 
s,t e <r(T) s e a{T) 

We have used the fact that the spectrum of T* is the complex conjugate 
of the spectrum of T, and applied (4.1) to the product T*T. If we establish 
further the inclusion 

(4.4) <7(T, T*) c {(s, s*) : s e a{T)} 

(whether or not T is normal, if t # s* then (T* - s*XT - si) + (T - t*) 
(T* - r/) is of the form S*S + SS* + kl with fc > 0, and therefore inver-
tible), then the spectral mapping theorem gives 

af(T9T*) ={/(s,s*):sG(7(r)}? 

( 4 5 ) || ƒ (T, T*)|| = sup {|/(5, s*)| : s e a(T)}, 

hence the "spectral theorem" for T [1]. 
Note that it is necessary, for (4.5), that the operator T be normal: for 

then the hermitian operator i(T*T - TT*) has spectrum {0} and must 
beO. 
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