ON THE NONEXISTENCE OF SOLUTIONS OF DIFFERENTIAL EQUATIONS IN NONREFLEXIVE SPACES¹

BY ARRIGO CELLINA

Communicated by M. H. Protter, May 8, 1972

We consider the problem of the existence of solutions of ordinary differential equations in Banach spaces. Counterexamples in c_0 by Dieudonné [2] and in l_2 by Yorke [4] show that, in infinite-dimensional spaces, Peano's existence theorem need not necessarily be true. A natural question then is that of asking whether there could exist infinite-dimensional Banach spaces on which Peano's theorem holds, or otherwise, whether the truth of Peano's theorem is a characterization of the finite dimensionality.

This paper offers only a partial answer to this question: Our Theorem 1 below states that there exist no nonreflexive spaces on which Peano's theorem holds.

THEOREM 1. Let X be a nonreflexive Banach space. Then there exists a continuous $F: R \times X \to X$ such that the Cauchy problem

(CP)
$$x' = F(t, x), \quad x(0) = 0,$$

admits no solution on any nonvanishing interval [a, b] containing the origin.

PROOF. Call B the unit ball of X. From R. C. James' characterization of reflexivity [3] it follows that there exists a $v \in X^*$, ||v|| = 1, such that, for every $x \in B$, $\langle v, x \rangle < 1$. We shall now construct a fixed-point-free continuous mapping f of B into itself with some special properties.

By definition of norm of v, we can recursively define a sequence of points x_n , $||x_n|| = 1$, such that $\langle v, x_n \rangle < \langle v, x_{n+1} \rangle$ and $\langle v, x_n \rangle \to 1$, and consider the sets

$$O_1 = \{x \in B : \langle v, x \rangle < 2\langle v, x_2 \rangle - 1\},$$

$$O_n = \{x \in B : 2\langle v, x_{n-1} \rangle - 1 < \langle v, x \rangle < 2\langle v, x_{n+1} \rangle - 1\}.$$

Then every O_i is open (relative to B) and their union covers B. Moreover it is not difficult to check that every point $x \in B$ belongs to at most two O_j and has a neighborhood that meets at most three O_j , so that the covering $\{O_n\}$ is locally finite and has a partition of unity subordinated

AMS 1970 subject classifications. Primary 34A10, 34G05; Secondary 46B10.

Key words and phrases. Ordinary differential equations, Cauchy problem, nonexistence of solutions, nonreflexive spaces.

Supported in part by the CNR, Comitato per la Matematica.

to it. Call p_n this partition and define f to be

$$f(x) = \frac{1}{2} \sum_{i=1}^{\infty} p_i(x) (\langle v, x_{i+1} \rangle)^{-1} (\langle v, x \rangle + 1) x_{i+1}.$$

Then f is a continuous map $B \to X$. Moreover fix $x \in B$ and let \hat{n} be such that x belongs at most to $O_{\hat{n}}$ and $O_{\hat{n}+1}$. Then

$$||f(x)|| \leq \frac{1}{2} \{ p_{\hat{n}}(x) (\langle v, x_{\hat{n}+1} \rangle)^{-1} + p_{\hat{n}+1}(x) (\langle v, x_{\hat{n}+2} \rangle)^{-1} \} (\langle v, x \rangle + 1)$$

$$< \frac{1}{2} \{ p_{\hat{n}}(x) (\langle v, x_{\hat{n}+1} \rangle)^{-1} 2 \langle v, x_{\hat{n}+1} \rangle \} + \frac{1}{2} \{ p_{\hat{n}+1}(x) (\langle v, x_{\hat{n}+2} \rangle)^{-1}$$

$$\cdot 2 \langle v, x_{\hat{n}+2} \rangle \}$$

= 1.

Therefore $f: B \to B$. In addition we have that

$$\langle v, f(x) \rangle = \frac{1}{2} \sum_{i=1}^{\infty} p_i(x) (\langle v, x \rangle + 1) = \frac{1}{2} (\langle v, x \rangle + 1).$$

This last equation implies the nonexistence of fixed points of f. In fact if $f(\xi) = \xi$, we would have $\langle v, \xi \rangle = 1$, contradicting our choice of v.

Let $\mathscr{F}: X \to B$ be an extension of f to the whole X, with range in B, and define the function $F: R \times X \to X$ by

$$F(t, x) = 2t\mathcal{F}(x/t^2), \quad t \neq 0,$$

= 0, \qquad t = 0.

Since $\|\mathscr{F}\| \le 1$, it follows that F is continuous on $R \times X$. Consider the Cauchy problem (CP) with the above defined F and let $y : [a, b] \to X$ be a solution, where $0 \in [a, b]$. For any given $t \in [a, b]$,

$$||y(t)|| \le \left| \int_0^t ||F(s, y(s))|| ds \right|$$
$$\le \left| \int_0^t 2s \, ds \right| = t^2$$

so that $||y/t^2|| \le 1$.

Hence, along such a solution, $F(t, y) = 2tf(y/t^2)$. Moreover we have

$$\langle v, y \rangle' = \langle v, y' \rangle = 2t \langle v, f(y/t^2) \rangle$$

= $2t(1/2)(\langle v, y/t^2 \rangle + 1) = (1/t)\langle v, y \rangle + t$.

The only solution of $\xi' = (1/t)\xi + t$, $\xi(0) = 0$, satisfying $|\xi| \le t^2$ is $\xi(t) = t^2$, so that $\langle v, y(t) \rangle = t^2$ for $t \in [a, b]$ or $\langle v, y(t)/t^2 \rangle = 1$. Since $||y(t)/t^2|| \le 1$, this contradicts our assumptions on v.

The technique used in the proof of the above theorem, of taking a

special fixed-point-free self mapping f of B, extending it to \mathcal{F} and defining F(t,x) as $2t\mathcal{F}(x/t^2)$ can be used to give explicit examples of differential equations without existence in l_1 and l_{∞} , which are noteworthy because of their simplicity.

In l_{∞} consider the mapping f given by

$$f(x_1, x_2, ..., x_n, ...) = (1 - ||x||, |x_1|^{1/2}, ..., |x_{n-1}|^{1/2}, ...).$$

This is a continuous fixed-point-free mapping $B \to B$. Extend it to a $\mathscr{F}: X \to B$ and define F as before. It follows again that for a possible solution y(t) we have $||y(t)/t^2|| \le 1$ so that the following system has to hold:

$$(1) y_1' = 2t(1 - ||y/t^2||),$$

(2)
$$y'_{n+1} = 2|y_n|^{1/2}, \quad n = 1, 2,$$

We see that every y_i is nonnegative and that y_1 cannot be identically zero on any interval $[0, \delta]$ since then, on one hand, every y_n would be identically zero on that interval, while on the other, for every t, $||y|| = \sup\{y_1(t), \ldots, y_n(t), \ldots\}$ should be t^2 . So $0 = \inf\{t \ge 0 : y_1(t) \ge 0\}$.

Equations (2) are the equations of the process of successive approximations for the problem $x'=2\mid x\mid^{1/2}, x(0)=0$, with first approximation y_1 . By a result of Dieudonné described in [1, p. 427], this process converges to the solution $x(t)=t^2$. Then on $[0,\delta]$, $\parallel y\parallel=t^2$ or $y_1'\equiv 0$. This implies $0\equiv y_1\equiv y_2\equiv\ldots\equiv y_n\equiv\ldots$ on $[0,\delta]$ contradicting $\parallel y\parallel=t^2$.

In l_1 consider the mapping f defined by

$$f(x_1, x_2, \ldots, x_n, \ldots) = (1 - ||x||, x_1, \ldots, x_{n-1}, \ldots).$$

It can be checked that this is a continuous fixed-point-free mapping of B into itself. Extending f and defining a continuous F(t, x) as before, we see again that a possible solution y of (CP) has to be such that $||y(t)|| \le t^2$ and has to satisfy, on any interval $[0, \delta]$, the system

$$y'_1 = 2t(1 - ||y/t^2||),$$

 $y'_{n+1} = 2y_n/t, \quad n = 1, 2,$

Then every y_i' and every y_i is nonnegative. Moreover we have

$$||y(t)|| = \sum_{i=1}^{\infty} y_i(t) = \sum_{i=1}^{\infty} \int_0^t y_i'(s) \, ds$$
$$= \int_0^t 2s(1 - ||y||/s^2) \, ds + 2 \sum_{i=1}^{\infty} \int_0^t y_i(s)/s \, ds.$$

Since the sequence $g_n(s) = \sum_{i=1}^n y_i(s)/s$ is nondecreasing and bounded

above by the integrable function ||y(s)/s||,

$$\sum_{i=1}^{\infty} \int_{0}^{t} y_{i}(s)/s \, ds = \lim_{n \to \infty} \int_{0}^{t} g_{n}(s) \, ds = \int_{0}^{t} \|y(s)/s\| \, ds.$$

Hence from (3) we have, for every $t \in [0, \delta]$,

$$||y(t)|| = \int_0^t 2s(1 - ||y/s||) ds + \int_0^t 2||y/s|| ds$$
$$= \int_0^t 2s ds = t^2.$$

This implies $y_1' \equiv 0$ and consequently $0 \equiv y_1 \equiv y_2 \equiv \ldots \equiv y_n \equiv \ldots$ This contradicts $||y|| = t^2$. Therefore no such solution y can exist.

REFERENCES

- 1. F. Brauer and S. Sternberg, Local uniqueness, existence in the large, and the convergence of successive approximations, Amer. J. Math. 80 (1958), 421-430. MR 20 #1806.
- 2. J. Dieudonné, Deux exemples singuliérs d'équations différentielles, Acta Sci. Math. Szeged 12 (1950), Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, pars B, 38-40. MR 11, 729.
- 38-40. MR 11, 729.

 3. R. C. James, Characterizations of reflexivity, Studia Math. 23 (1963/64), 205-216. MR 30 #431.
- 4. J. Yorke, A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac. 13 (1970), 19-21. MR 41 #8792.

ISTITUTO DI MATEMATICA, VIALE MORGAGNI 67/A, I 50134 FIRENZE, ITALY