CONTRIBUTION TO THE THEORY OF EULER'S FUNCTION $\varphi(x)^{1}$

BY EMIL GROSSWALD
Communicated by Dock S. Rim, August 21, 1972

1. Introduction. The last few years have witnessed a renewed interest in the study of the number $N(n)$ of solutions of the equation

$$
\begin{equation*}
\varphi(x)=n, \tag{1}
\end{equation*}
$$

where $\varphi(x)$ is Euler's totient function.
The purpose of the present paper is to give a sharpened (and corrected) version of a theorem of Carmichael (Theorem 1; see [1, Theorem II]) and the proof of a weak form of the

Conjecture. For all natural integers $n, N(n) \neq 1$.
Lower case letters (with or without subscripts, or superscripts) stand, in general, for natural integers, p and q, in particular, for odd rational primes.

2. Main results.

Definition. The natural integer k is said to be admissible, if its (unique) representation as a sum of distinct powers of 2 ,

$$
k=2^{s_{1}}+2^{s_{2}}+\cdots+2^{s_{r}}, \quad s_{1}>s_{2}>\cdots>s_{r} \geqq 0
$$

is such that $2^{2 s_{j}}+1$ is a (Fermat) prime for each $j=1,2, \ldots, r$. The set of admissible integers is denoted by K.
Remark. For $r=0$ it is convenient to consider the corresponding $k=0$ as an admissible integer; one observes that formally one has $2^{0}+1=2$, a prime.

Theorem 1. Let $\chi(k)$ be the characteristic function of the set $K(\chi(k)=1$ if $k \in K, \chi(k)=0$ if $k \notin K)$ and set $g(m)=\sum_{0 \leqq k \leqq m} \chi(k)$; then, if $n=2^{m}$, equation (1) has

$$
\begin{equation*}
N(n)=g(m)+\chi(m) \tag{I}
\end{equation*}
$$

solutions.
Corollary 1. For $n=2^{m}, N\left(2^{m}\right)=\min (m+2,32)$.

[^0]It is trivial, but useful, to observe that if (1) has the odd solution x_{0}, then it also has the even solution $2 x_{0}$ and conversely. Hence, if (1) has exactly one solution, then $4 \mid x_{0}$, as observed already by Carmichael (see [1]; see also Donnelly [2]).

In the study of (1) for general n, it is convenient to consider residue classes modulo $M=2^{c} \cdot 3$. Also, the following easily proven Lemma and its Corollary are useful.

Lemma. The equation $p^{a}(p-1)=q^{b}(q-1)$ cannot have solutions in primes p, q, with $p>q$, unless $a=0$ and $p=q^{b}(q-1)$.

Corollary 2. The equations (2), (2'), (3), (4), (4'), (5), and (5') have at most 2 solutions (i.e., $\delta=0,1$, or 2).

Theorem 2.For $n=2$, equation (1) has the three solutions $x=3,4$, and 6. For $2 \neq n \equiv 2(\bmod 12)$, (1) has, in general, no solution. Let $\delta(n)$ be the number of solutions of

$$
\begin{equation*}
n=p^{2 m-1}(p-1), \quad p \equiv-1(\bmod 12) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
N(n)=2 \delta(n) \tag{II}
\end{equation*}
$$

and to a solution p of (2) correspond the solutions $p^{2 m}$ and $2 p^{2 m}$ of (1).
Theorem 2. For $n \equiv-2(\bmod 12)$, let $\delta(n)$ be the number of solutions of

$$
n=p^{2 m}(p-1), \quad p \equiv-1(\bmod 12)
$$

then

$$
N(n)=2 \delta(n)
$$

and to a solution p of (2^{\prime}) correspond the two solutions $p^{2 m+1}$ and $2 p^{2 m+1}$ of (1).

Theorem 3. Let $n \equiv 6(\bmod 12)$; if $\delta(n)$ stands for the number of solutions of

$$
\begin{equation*}
n=p^{c-1}(p-1), \quad p=3 \text { or } p \equiv 7(\bmod 12) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
N(n)=2 \delta(n) \tag{II'}
\end{equation*}
$$

and to a solution p of (3) correspond the two solutions p^{c} and $2 p^{c}$ of (1).
Remark. All possible cases actually occur. The smallest values of $n \equiv 6(\bmod 12)$, for which (1) has 0,2 , or 4 solutions are $n=90, n=30$, and $n=6$, respectively.

Theorems $2,2^{\prime}$, and 3 , together with the trivial remark that, for $1<n \equiv$ $1(\bmod 2), N(n)=0$, settle the problem for all residue classes $n \not \equiv$ $0(\bmod 4)$. A partial solution of the problem of determining $N(n)$ for $n \equiv 0(\bmod 4)$ is obtained by considering the modulus $M=24=2^{3} \cdot 3$.

Theorem 4. Let $n \equiv 4(\bmod 24)$ and denote by δ_{1} the number of solutions of

$$
\begin{equation*}
n / 2=p^{2 m-1}(p-1), \quad p \equiv-1(\bmod 12) ; \tag{4}
\end{equation*}
$$

by δ_{2} the number of solutions of

$$
n=p^{2 m}(p-1), \quad p \equiv 5(\bmod 12)
$$

and by δ_{3} the number of solutions of

$$
n=p_{1}^{c_{1}-1} p_{2}^{c_{2}-1}\left(p_{1}-1\right)\left(p_{2}-1\right)
$$

$$
\begin{aligned}
& p_{1} \equiv p_{2} \equiv-1(\bmod 12), \\
& c_{1} \equiv c_{2}(\bmod 2)
\end{aligned}
$$

then

$$
\begin{equation*}
N(n)=3 \delta_{1}+2 \delta_{2}+2 \delta_{3} . \tag{III}
\end{equation*}
$$

Remarks. In Theorem $4, \delta_{1}=0$ or $1 ; \delta_{2}=0,1$, or 2 , while δ_{3} may be any nonnegative integer. If $\delta_{1}=1$, then $x_{0}=p^{2 m}$ is the unique odd solution of $\varphi\left(x_{0}\right)=n / 2$ and to it correspond the three solutions $3 p^{2 m}, 4 p^{2 m}$, and $6 p^{2 m}$ of (1). To each solution p of (4^{\prime}) correspond the two solutions $p^{2 m+1}$ and $2 p^{2 m+1}$ of (1), and to each solution p_{1}, p_{2} of (4"), correspond the two solutions $p^{c_{1}} p^{c_{2}}$ and $2 p^{c_{1}} p^{c_{2}}$ of (1).

If $n \equiv-4(\bmod 24)$, then $N(n)$ is still given formally by (III), where $\delta_{1}, \delta_{2}, \delta_{3}$ are now the numbers of solutions of equations very similar to (but not identical with) (4), (4'), (4"), and $\delta_{1}=0,1$, or $2 ; \delta_{2}=0$ or 1 ; and $\delta_{3}=0,1,2, \ldots$; the exact statement of the corresponding Theorem 4^{\prime} may be omitted.

Theorem 5. Let $n \equiv 12(\bmod 24)$ and set $n=12 \cdot 3^{b-1} f,(f, 6)=1$. If $f>1$, denote by $\delta_{1}^{\prime}(=0,1$, or 2$)$ the number of solutions of

$$
\begin{equation*}
2 \cdot 3^{b} f=p^{c-1}(p-1), \quad p \equiv 7(\bmod 12) \tag{5}
\end{equation*}
$$

by $\delta_{2}^{\prime}(=0,1$, or 2$)$ the number of solutions of

$$
4 \cdot 3^{b} f=p^{c-1}(p-1), \quad p \equiv 13(\bmod 24)
$$

and by $\delta_{3}^{\prime}(=0,1, \ldots)$ the number of solutions of

$$
4 \cdot 3^{b} f=p_{1}^{c_{1}-1} p_{2}^{c_{2}-1}\left(p_{1}-1\right)\left(p_{2}-1\right), \quad 3 \nmid p_{1} p_{2}
$$

$$
p_{1} \equiv p_{2} \equiv 3(\bmod 4)
$$

$$
\begin{equation*}
N(n)=3 \delta_{1}^{\prime}+2\left(\delta_{2}^{\prime}+\delta_{3}^{\prime}\right) \tag{III'}
\end{equation*}
$$

If $f=1$, then

$$
\begin{equation*}
N(n)=3+\delta_{0}+2\left(\delta_{0}^{\prime}+J+R\right) \tag{III'}
\end{equation*}
$$

where $\delta_{0}=1$ if $2 \cdot 3^{b}+1$ is a prime, $\delta_{0}=0$ otherwise; $\delta_{0}^{\prime}=1$ if $4 \cdot 3^{b}+1$ is a prime, $\delta_{0}^{\prime}=0$ otherwise ; J is the number of integers $a_{j}, 1 \leqq a_{j}<b$, such that $2 \cdot 3^{b-a_{j}+1}$ is a prime; and R is the number of partitions of b into two positive summands, $b=b_{r}^{\prime}+b_{r}^{\prime \prime}, b_{r}^{\prime} \neq b_{r}^{\prime \prime}, 1 \leqq r \leqq R$, such that $2 \cdot 3^{b^{\prime}}+1$ and $2 \cdot 3^{b^{\prime \prime}}+1$ should both be primes.

Remarks. To each solution p of (5) correspond the three solutions $3 p^{c}, 4 p^{c}$, and $6 p^{c}$ of (1); to each solution p of (5^{\prime}) correspond the two solutions p^{c} and $2 p^{c}$ of (1); and to each solution p_{1}, p_{2} of ($5^{\prime \prime}$) correspond the two solutions $p_{1}^{c_{1}} p_{2}^{c_{2}}$ and $2 p_{1}^{c_{1}} p_{2}^{c_{2}}$ of (1). It may be shown that the prime solutions of $\left(5^{\prime}\right)$ must in fact be of the form $p=1+4 \cdot 3^{b}\left(\bmod 8 \cdot 3^{b}\right)$. In case $f=1$, (1) always has the three solutions $4 \cdot 3^{b+1}, 7 \cdot 3^{b}$, and $2 \cdot 7 \cdot 3^{b}$.

Theorems 2 to 5 and the remark that $1<n \equiv 1(\bmod 2) \Rightarrow N(n)=0$ give the exact number of solutions of (1) for $n \neq 0(\bmod 8)$. If we use the modulus $M=48$, we are able to settle the case of the residue classes $0 \not \equiv n \equiv 8(\bmod 16) ;$ and by using the modulus $M=96$, also the classes $0 \not \equiv n \equiv 16(\bmod 32)$. In all cases, formulae like (II), or (III) show that the Conjecture holds for all residue classes considered. Nevertheless, the attempt to settle the Conjecture by an induction from the modulus $M=2^{c} \cdot 3$ to the modulus $2 M=2^{c+1} \cdot 3$ fails. We can, therefore, state only

Remarks 6. The Conjecture holds, except, possibly, for integers $n \equiv$ $0\left(\bmod 2^{c}\right)$, with $c \geqq 5$.

This is only slightly stronger than the first statement of the following theorem, essentially due to Donnelly [2].

Theorem A. The Conjecture holds, except, possibly for integers $n \equiv$ $0\left(\bmod 2^{c}\right)$, with $c \geqq 4$, and if x_{0} is the smallest integer for which $N\left(x_{0}\right)=1$, then $n\left(=\varphi\left(x_{0}\right)\right) \equiv 0\left(\bmod 2^{14}\right)$.
3. Sketches of proofs. Only the proofs of Theorem 1 (with Corollary) and Theorem 2 will be sketched; the other proofs, while more complicated, run along similar lines.

Proof of Theorem 1. Let $x=2^{b} f, f$ odd, be a solution of (1) with $n=2^{m}$. Then, by the multiplicativity of the φ-function, $\varphi(x)=2^{b-1}$ $\varphi(f)=2^{m}, \varphi(f)=2^{k}, k=m-b+1$. If $p^{c} \mid f$, then $p^{c-1} \mid 2^{k}$, so that $c=1$ and f is square-free, $f=p_{1} p_{2} \ldots p_{r}$, say, $p_{i} \neq p_{j}$ if $i \neq j$. Then $\varphi(f)=$ $\prod_{p \mid f}(p-1)=2^{k}$, so that $p-1=2^{e}$. As is well known, this is possible
only for $e=2^{s}$; hence, $p \mid f \Rightarrow p=1+2^{2^{s}}, \varphi(f)=\prod_{j=1}^{r} 2^{2 s_{j}}=2^{k}, k=$ $\sum_{j=1}^{r} 2^{s_{j}}$. It follows that a solution of (1) of the form $x=2^{b} f$ is possible only if b is such, that $k=m-b+1$ is admissible, i.e., if k has a diadic representation $k=\sum_{j=1}^{r} 2^{s_{j}}$ with all $2^{2^{s_{j}}}+1$ primes. To each such b there exists a unique solution $x=2^{b} f$, except for $b=1$, i.e., for $k=m$, when besides $x=2 f$, there is also the added solution $x=f$. This essentially finishes the proof of Theorem 1.

Proof of Corollary 1. The Corollary follows from the remark that all integers up to $2^{5}-1$ are admissible, while 2^{5} is not. For $m \leqq 31$, $N\left(2^{m}\right)=1+\sum_{0 \leqq k \leqq m} 1=m+2$; in particular, $N\left(2^{31}\right)=33$. For $m=32$, one has the 32 solutions $x=2^{b} f$ with $2 \leqq b \leqq 33$ (but not with $b=1$; $n=2^{32}$ still (see [1]) seems to be the smallest known integer such that (1) has no odd solution); more generally, for $m>32$ at least the 32 solutions $x=2^{b} f$ with $b=m-k+1,0 \leqq k \leqq 31$, always exist, as claimed.

Proof of Theorem 2. For $n=2$ the result follows from Theorem 1. Otherwise, $n=\varphi(x)=2(6 k+1) \equiv 2(\bmod 4), k>0$, so that x is divisible by at most one single odd prime p (otherwise $4 \mid n$). If $x=p^{c}$ is a solution of (1), also $2 p^{c}$ is one. Finally, if $x=4 y, y \neq 1$, then $4 \mid n$, a contradiction. Hence, either $x=4$ (and this is excluded by $n>2$), or else $2^{e} \mid x \Rightarrow e=0$, or $e=1$, i.e., $x=p^{c}$, or $x=2 p^{c}$. As seen, each of these two is a solution of (1) if, and only if, the other one is and if $\delta(n)$ is the number of odd solutions $x=p^{c}$ of (1), then $N(n)=2 \delta(n)$. If $x=p^{c}$, then $\varphi(x)=p^{c-1}(p-1)=$ $2(6 k+1)$. If $p=3$, then $3^{c-1}=6 k+1 \equiv 1(\bmod 3), c=1, n=2$, excluded. If $p \equiv 1,5$, or $7(\bmod 12)$, then $(p-1) / 2 \equiv 0$, 2 , or $3(\bmod 6)$, a contradiction. It follows that $p \equiv-1(\bmod 12)$. Taking congruences modulo 12, $n=\varphi(x)=(p-1) p^{c-1} \equiv(-2)(-1)^{c-1} \equiv 2(-1)^{c}(\bmod 12)$ and $n \equiv 2(\bmod 12)$ imply that c is even, $c=2 m$ and Theorem 2 is proved. The proofs of the other theorems are similar and will be suppressed.

Bibliography

1. R. D. Carmichael, On Euler's ϕ-function, Bull. Amer. Math. Soc. 13 (1907), 241-243.
2. H. Donnelly, On a problem concerning Euler's Phi-function (to appear).

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 (Current address after July 1, 1973.)

Current address (until June 30, 1973): Department of Mathematics, The Technion, Haifa, Israel

[^0]: AMS(MOS) subject classifications (1970). Primary 10A20; Secondary 10B15, 10B99, 10-01.
 ${ }^{1}$ This paper was written with partial support from the National Science Foundation, through the grant GP 23170.

