BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 2, March 1973

CONTRIBUTION TO THE THEORY OF EULER'S FUNCTION $\varphi(x)^1$

BY EMIL GROSSWALD

Communicated by Dock S. Rim, August 21, 1972

1. Introduction. The last few years have witnessed a renewed interest in the study of the number N(n) of solutions of the equation

(1) $\varphi(x) = n,$

where $\varphi(x)$ is Euler's totient function.

The purpose of the present paper is to give a sharpened (and corrected) version of a theorem of Carmichael (Theorem 1; see [1, Theorem II]) and the proof of a weak form of the

CONJECTURE. For all natural integers $n, N(n) \neq 1$.

Lower case letters (with or without subscripts, or superscripts) stand, in general, for natural integers, p and q, in particular, for odd rational primes.

2. Main results.

DEFINITION. The natural integer k is said to be *admissible*, if its (unique) representation as a sum of distinct powers of 2,

$$k = 2^{s_1} + 2^{s_2} + \dots + 2^{s_r}, \quad s_1 > s_2 > \dots > s_r \ge 0,$$

is such that $2^{2^{s_j}} + 1$ is a (Fermat) prime for each j = 1, 2, ..., r. The set of admissible integers is denoted by K.

REMARK. For r = 0 it is convenient to consider the corresponding k = 0 as an admissible integer; one observes that formally one has $2^0 + 1 = 2$, a prime.

THEOREM 1. Let $\chi(k)$ be the characteristic function of the set K ($\chi(k) = 1$ if $k \in K$, $\chi(k) = 0$ if $k \notin K$) and set $g(m) = \sum_{0 \le k \le m} \chi(k)$; then, if $n = 2^m$, equation (1) has

(I)
$$N(n) = g(m) + \chi(m)$$

solutions.

COROLLARY 1. For $n = 2^m$, $N(2^m) = \min(m + 2, 32)$.

AMS(MOS) subject classifications (1970). Primary 10A20; Secondary 10B15, 10B99, 10-01.

¹ This paper was written with partial support from the National Science Foundation, through the grant GP 23170.

Copyright © American Mathematical Society 1973

It is trivial, but useful, to observe that if (1) has the odd solution x_0 , then it also has the even solution $2x_0$ and conversely. Hence, if (1) has exactly one solution, then $4|x_0$, as observed already by Carmichael (see [1]; see also Donnelly [2]).

In the study of (1) for general *n*, it is convenient to consider residue classes modulo $M = 2^{c} \cdot 3$. Also, the following easily proven Lemma and its Corollary are useful.

LEMMA. The equation $p^{a}(p-1) = q^{b}(q-1)$ cannot have solutions in primes p, q, with p > q, unless a = 0 and $p = q^{b}(q-1)$.

COROLLARY 2. The equations (2), (2'), (3), (4), (4'), (5), and (5') have at most 2 solutions (i.e., $\delta = 0, 1, \text{ or } 2$).

THEOREM 2. For n = 2, equation (1) has the three solutions x = 3, 4, and 6. For $2 \neq n \equiv 2 \pmod{12}$, (1) has, in general, no solution. Let $\delta(n)$ be the number of solutions of

(2)
$$n = p^{2m-1}(p-1), \quad p \equiv -1 \pmod{12};$$

then

(II)
$$N(n) = 2\delta(n)$$

and to a solution p of (2) correspond the solutions p^{2m} and $2p^{2m}$ of (1).

THEOREM 2. For $n \equiv -2 \pmod{12}$, let $\delta(n)$ be the number of solutions of

(2')
$$n = p^{2m}(p-1), \quad p \equiv -1 \pmod{12};$$

then

(II')
$$N(n) = 2\delta(n),$$

and to a solution p of (2') correspond the two solutions p^{2m+1} and $2p^{2m+1}$ of (1).

THEOREM 3. Let $n \equiv 6 \pmod{12}$; if $\delta(n)$ stands for the number of solutions of

(3)
$$n = p^{c-1}(p-1), \quad p = 3 \text{ or } p \equiv 7 \pmod{12},$$

then

(II'')
$$N(n) = 2\delta(n),$$

and to a solution p of (3) correspond the two solutions p^{c} and $2p^{c}$ of (1).

REMARK. All possible cases actually occur. The smallest values of $n \equiv 6 \pmod{12}$, for which (1) has 0, 2, or 4 solutions are n = 90, n = 30, and n = 6, respectively.

Theorems 2, 2', and 3, together with the trivial remark that, for $1 < n \equiv 1 \pmod{2}$, N(n) = 0, settle the problem for all residue classes $n \neq 0 \pmod{4}$. A partial solution of the problem of determining N(n) for $n \equiv 0 \pmod{4}$ is obtained by considering the modulus $M = 24 = 2^3 \cdot 3$.

THEOREM 4. Let $n \equiv 4 \pmod{24}$ and denote by δ_1 the number of solutions of

(4)
$$n/2 = p^{2m-1}(p-1), \quad p \equiv -1 \pmod{12};$$

by δ_2 the number of solutions of

(4')
$$n = p^{2m}(p-1), \quad p \equiv 5 \pmod{12};$$

and by δ_3 the number of solutions of

(4'')
$$n = p_1^{c_1-1} p_2^{c_2-1} (p_1-1)(p_2-1),$$
 $p_1 \equiv p_2 \equiv -1 \pmod{12},$
 $c_1 \equiv c_2 \pmod{2};$

then

(III)
$$N(n) = 3\delta_1 + 2\delta_2 + 2\delta_3.$$

REMARKS. In Theorem 4, $\delta_1 = 0$ or 1; $\delta_2 = 0, 1$, or 2, while δ_3 may be any nonnegative integer. If $\delta_1 = 1$, then $x_0 = p^{2m}$ is the unique odd solution of $\varphi(x_0) = n/2$ and to it correspond the three solutions $3p^{2m}$, $4p^{2m}$, and $6p^{2m}$ of (1). To each solution p of (4') correspond the two solutions p^{2m+1} and $2p^{2m+1}$ of (1), and to each solution p_1 , p_2 of (4"), correspond the two solutions $p^{c_1}p^{c_2}$ and $2p^{c_1}p^{c_2}$ of (1).

If $n \equiv -4 \pmod{24}$, then N(n) is still given formally by (III), where $\delta_1, \delta_2, \delta_3$ are now the numbers of solutions of equations very similar to (but not identical with) (4), (4'), (4''), and $\delta_1 = 0, 1, \text{ or } 2; \delta_2 = 0 \text{ or } 1;$ and $\delta_3 = 0, 1, 2, \ldots$; the exact statement of the corresponding Theorem 4' may be omitted.

THEOREM 5. Let $n \equiv 12 \pmod{24}$ and set $n = 12 \cdot 3^{b-1}f$, (f, 6) = 1. If f > 1, denote by $\delta'_1 (=0, 1, \text{ or } 2)$ the number of solutions of

(5)
$$2 \cdot 3^b f = p^{c-1}(p-1), \quad p \equiv 7 \pmod{12};$$

by δ'_2 (=0, 1, or 2) the number of solutions of

(5')
$$4 \cdot 3^b f = p^{c-1}(p-1), \quad p \equiv 13 \pmod{24};$$

and by δ'_3 (=0, 1, ...) the number of solutions of

(5'')
$$4 \cdot 3^{b}f = p_{1}^{c_{1}-1} p_{2}^{c_{2}-1}(p_{1}-1)(p_{2}-1), \qquad \begin{array}{l} p_{1} \equiv p_{2} \equiv 3 \pmod{4}, \\ 3 \not p_{1}p_{2}; \end{array}$$

then

EMIL GROSSWALD

(III') $N(n) = 3\delta'_1 + 2(\delta'_2 + \delta'_3).$

If f = 1, then

(III'')
$$N(n) = 3 + \delta_0 + 2(\delta'_0 + J + R),$$

where $\delta_0 = 1$ if $2 \cdot 3^b + 1$ is a prime, $\delta_0 = 0$ otherwise; $\delta'_0 = 1$ if $4 \cdot 3^b + 1$ is a prime, $\delta'_0 = 0$ otherwise; J is the number of integers $a_j, 1 \leq a_j < b$, such that $2 \cdot 3^{b-a_j+1}$ is a prime; and R is the number of partitions of b into two positive summands, $b = b'_r + b''_r, b'_r \neq b''_r, 1 \leq r \leq R$, such that $2 \cdot 3^{b'} + 1$ and $2 \cdot 3^{b''} + 1$ should both be primes.

REMARKS. To each solution p of (5) correspond the three solutions $3p^c$, $4p^c$, and $6p^c$ of (1); to each solution p of (5') correspond the two solutions p^c and $2p^c$ of (1); and to each solution p_1, p_2 of (5'') correspond the two solutions $p_{1}^{c_1} p_{2}^{c_2}$ and $2p_{1}^{c_1} p_{2}^{c_2}$ of (1). It may be shown that the prime solutions of (5') must in fact be of the form $p = 1 + 4 \cdot 3^b \pmod{8 \cdot 3^b}$. In case f = 1, (1) always has the three solutions $4 \cdot 3^{b+1}, 7 \cdot 3^b$, and $2 \cdot 7 \cdot 3^b$.

Theorems 2 to 5 and the remark that $1 < n \equiv 1 \pmod{2} \Rightarrow N(n) = 0$ give the exact number of solutions of (1) for $n \neq 0 \pmod{8}$. If we use the modulus M = 48, we are able to settle the case of the residue classes $0 \neq n \equiv 8 \pmod{16}$; and by using the modulus M = 96, also the classes $0 \neq n \equiv 16 \pmod{32}$. In all cases, formulae like (II), or (III) show that the *Conjecture* holds for all residue classes considered. Nevertheless, the attempt to settle the *Conjecture* by an induction from the modulus $M = 2^c \cdot 3$ to the modulus $2M = 2^{c+1} \cdot 3$ fails. We can, therefore, state only

REMARKS 6. The Conjecture holds, except, possibly, for integers $n \equiv 0 \pmod{2^c}$, with $c \ge 5$.

This is only slightly stronger than the first statement of the following theorem, essentially due to Donnelly [2].

THEOREM A. The Conjecture holds, except, possibly for integers $n \equiv 0 \pmod{2^c}$, with $c \ge 4$, and if x_0 is the smallest integer for which $N(x_0) = 1$, then $n (=\varphi(x_0)) \equiv 0 \pmod{2^{14}}$.

3. Sketches of proofs. Only the proofs of Theorem 1 (with Corollary) and Theorem 2 will be sketched; the other proofs, while more complicated, run along similar lines.

PROOF OF THEOREM 1. Let $x = 2^b f$, f odd, be a solution of (1) with $n = 2^m$. Then, by the multiplicativity of the φ -function, $\varphi(x) = 2^{b-1} \varphi(f) = 2^m$, $\varphi(f) = 2^k$, k = m - b + 1. If $p^c | f$, then $p^{c-1} | 2^k$, so that c = 1 and f is square-free, $f = p_1 p_2 \dots p_r$, say, $p_i \neq p_j$ if $i \neq j$. Then $\varphi(f) = \prod_{p \mid f} (p-1) = 2^k$, so that $p-1 = 2^e$. As is well known, this is possible

340

[March

only for $e = 2^s$; hence, $p|f \Rightarrow p = 1 + 2^{2^s}$, $\varphi(f) = \prod_{j=1}^r 2^{2^{s_j}} = 2^k$, $k = \sum_{j=1}^r 2^{s_j}$. It follows that a solution of (1) of the form $x = 2^b f$ is possible only if b is such, that k = m - b + 1 is admissible, i.e., if k has a diadic representation $k = \sum_{j=1}^r 2^{s_j}$ with all $2^{2^{s_j}} + 1$ primes. To each such b there exists a unique solution $x = 2^b f$, except for b = 1, i.e., for k = m, when besides x = 2f, there is also the added solution x = f. This essentially finishes the proof of Theorem 1.

PROOF OF COROLLARY 1. The Corollary follows from the remark that all integers up to $2^5 - 1$ are admissible, while 2^5 is not. For $m \leq 31$, $N(2^m) = 1 + \sum_{0 \leq k \leq m} 1 = m + 2$; in particular, $N(2^{31}) = 33$. For m = 32, one has the 32 solutions $x = 2^b f$ with $2 \leq b \leq 33$ (but not with b = 1; $n = 2^{32}$ still (see [1]) seems to be the smallest known integer such that (1) has no odd solution); more generally, for m > 32 at least the 32 solutions $x = 2^b f$ with b = m - k + 1, $0 \leq k \leq 31$, always exist, as claimed.

PROOF OF THEOREM 2. For n = 2 the result follows from Theorem 1. Otherwise, $n = \varphi(x) = 2(6k + 1) \equiv 2 \pmod{4}$, k > 0, so that x is divisible by at most one single odd prime p (otherwise 4|n). If $x = p^c$ is a solution of (1), also $2p^c$ is one. Finally, if x = 4y, $y \neq 1$, then 4|n, a contradiction. Hence, either x = 4 (and this is excluded by n > 2), or else $2^e | x \Rightarrow e = 0$, or e = 1, i.e., $x = p^c$, or $x = 2p^c$. As seen, each of these two is a solution of (1) if, and only if, the other one is and if $\delta(n)$ is the number of odd solutions $x = p^c$ of (1), then $N(n) = 2\delta(n)$. If $x = p^c$, then $\varphi(x) = p^{c-1}(p-1) =$ 2(6k + 1). If p = 3, then $3^{c-1} = 6k + 1 \equiv 1 \pmod{3}$, c = 1, n = 2, excluded. If $p \equiv 1$, 5, or 7 (mod 12), then $(p - 1)/2 \equiv 0$, 2, or 3 (mod 6), a contradiction. It follows that $p \equiv -1 \pmod{12}$. Taking congruences modulo 12, $n = \varphi(x) = (p - 1)p^{c-1} \equiv (-2)(-1)^{c-1} \equiv 2(-1)^c \pmod{12}$ and $n \equiv 2 \pmod{12}$ imply that c is even, c = 2m and Theorem 2 is proved. The proofs of the other theorems are similar and will be suppressed.

BIBLIOGRAPHY

R. D. Carmichael, On Euler's \$\phi-function\$, Bull. Amer. Math. Soc. 13 (1907), 241–243.
H. Donnelly, On a problem concerning Euler's Phi-function (to appear).

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122 (Current address after July 1, 1973.)

Current address (until June 30, 1973): Department of Mathematics, The Technion, Haifa, Israel