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This announcement is a sequel to Greene-Wu [1], [2]. Here we shall 
concentrate on Kâhler manifolds of nonnegative curvature. Our first result 
improves Theorem 3 of [2], but the latter is needed in the proof of the 
former. 

THEOREM 1. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative-sectional curvature. Let K be the canonical bundle 
of M and let L be a holomorphic line bundle on M such that L ® K* > 0 
(K* denotes the dual o / K ; L ( g ) K * > 0 means that the line bundle L ® K* 
possesses a Hermitian metric of positive curvature). Then HP(M, &(L)) = 0 
forp ^ 1. 

The next theorem is the noncompact analogue of Kodaira's embedding 
theorem [4]. Its proof depends on Theorem 1 and is similar to Kodaira's 
proof in broad outline, but there are technical complications because of 
the noncompactness. 

THEOREM 2. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative sectional curvature. Then M possesses non-
constant meromorphic functions. Specifically, given any compact set K £ M, 
there exists a positive integer N and a meromorphic mapping (see Remmert 
[5]) cp.M -» PNC such that cp\K is a holomorphic embedding. 

In [2], we conjectured that every complete noncompact Kâhler manifold 
with positive sectional curvature must be a Stein manifold. The next 
theorem includes the solution of this conjecture as a special case. Recall 
that a subset S of a Riemannian manifold is convex if, for any p9qeS, at 
least one minimizing geodesic joining p and q lies in S. 

THEOREM 3. Let M be a complete Kahler manifold with positive Ricci 
curvature and nonnegative sectional curvature, and suppose that the 
canonical bundle of M is topologically trivial. Then every convex open subset 
of M is a Stein manifold. 

The fact that any open convex subset of such a manifold M is necessarily 
a Stein manifold should be compared with Theorem 7 of [1] ; of course the 
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present Theorem 3 completely supersedes Theorem 6 of [1]. In case M is 
an open subset of Cn, we can prove that M is a Stein manifold under other
wise much weaker hypotheses. 

THEOREM 4. If M is an open subset ofCn which admits a complete Kahler 
metric G ofnonnegative sectional curvature, then every convex (relative to G) 
open subset of M is a domain of holomorphy. 

This theorem is an improvement of Corollary (A) of Theorem 3 in [2]. 
The next result complements Theorem 5 of [2]. We shall use the notation 

of that theorem plus the following: Given a complete Kàhler manifold M 
and a bounded subset D of M, we let rD be the minimum of the Ricci 
curvature of M in 25. 

THEOREM 5. Let M be as in Theorem 3. Let D be a bounded pseudoconvex 
open subset in M and let cp be a plurisubharmonic function in D. Then, for 
any feLf0>q)(D, cp\ q > 0, with df = 0, we can find u e Lf0>q- D(D, (p) such 
that du = f and 

qrD f \u\2e~m S f I ƒ |2<r*Q. 

The next theorem generalizes to certain Kàhler manifolds ofnonnegative 
curvature the fact that no nonzero holomorphic function on C" is in Lp. 
The theorem is a consequence of the following result concerning Rieman
nian manifolds : If M is a complete noncompact Riemannian manifold of 
nonnegative sectional curvature and if ƒ ^ 0 is a nonnegative C00 sub-
harmonic function, then j M fQ = +oo. (Here Q = the Riemannian 
volume form on M and ƒ being subharmonic means A ƒ ^ 0 everywhere 
on M.) 

THEOREM 6. Let M be a complete noncompact Kàhler manifold with 
nonnegative sectional curvature. Then no nonzero holomorphic function on 
M is in LPfor any p satisfying 1 ^ p < + oo. 

We would like to propose another conjecture. In its most conservative 
form, it reads : A complete Kàhler manifold with positive Ricci curvature 
and nonnegative sectional curvature is holomorphically convex. The fol
lowing theorem should be useful in resolving this conjecture. Recall that 
an open subset U of a complex manifold M is said to be Runge in M if 
given a holomorphic function ƒ on U and a compact set K ^ U, there 
exists a holomorphic function F on M which approximates ƒ on K arbi
trarily closely. Also recall that a function on a Riemannian manifold is 
convex if its restriction to every geodesic is a convex function of one 
variable ; a convex function is always continuous. 
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THEOREM 7. Let M be a complete noncompact Kâhler manifold with 
positive Ricci curvature and nonnegative sectional curvature. Let cp\M-*R 
be a convex function such that each sublevel set Mc — {peM:q>(p) < c} 
has compact closure in M. Then Mc is Runge in M for all ceR. 

In closing, we remark that all the preceding theorems make essential 
use of the approximation theorem of Greene-Wu [3] ; this fact is not sur
prising since that approximation theorem was proved with these appli
cations in mind. 
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