BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 1, January 1974

ON HILBERT TRANSFORMS ALONG CURVES

BY ALEXANDER NAGEL,¹ NESTOR RIVIÈRE² AND STEPHEN WAINGER¹

Communicated by E. Stein, June 1, 1973

Let $\gamma(t)$, $-\infty < t < \infty$, be a smooth curve in \mathbb{R}^n . For f in $C_0^{\infty}(\mathbb{R}^n)$ set

(1)
$$Tf(x) = \lim_{\epsilon \to \infty, N \to \infty} \int_{\epsilon \le |t| \le N} \frac{f(x - \gamma(t))}{t} dt.$$

Tf is the Hilbert transform of f along the curve $\gamma(t)$. E. M. Stein [2] raised the following general question: For what values of p and what curves $\gamma(t)$ is *Tf* a bounded operator in L^p ? If $\gamma(t)$ is a straight line it is well known that T is bounded for 1 . Stein and Wainger [3] proved that the operator is bounded for <math>p=2 if

$$\gamma(t) = (|t|^{\alpha_1} \operatorname{sgn} t, \cdots, |t|^{\alpha_n} \operatorname{sgn} t), \qquad \alpha_i > 0.$$

Here we show that Tf is a bounded operator in L^p for some p other than 2 and some nontrivial, nonlinear γ 's. We prove

THEOREM 1. Let $\gamma(t) = (|t|^{\alpha_1} \operatorname{sgn} t, |t|^{\alpha_2} \operatorname{sgn} t) \alpha_1 > 0$, $\alpha_2 > 0$. Then Tf is bounded in L^p for $\frac{4}{3} .$

SKETCH OF THE PROOF. The transformation (1) may be expressed as a multiplier transformation. In our case,

(2)
$$(Tf)^{(x, y)} = m(x, y)f(x, y)$$

where

(3)
$$m(x, y) = \lim_{\epsilon \to \infty, N \to \infty} \int_{\epsilon \le |t| \le N} \exp\{i |t|^{\alpha_1} \operatorname{sgn} tx + i |t|^{\alpha_2} \operatorname{sgn} ty\} \frac{dt}{t}$$

([^] denotes Fourier transform).

By a change of variables we may assume $\alpha_1 = 1$ and $\alpha_2 \ge 1$. Furthermore we may assume $\alpha_2 > 1$, for otherwise we have the case that $\gamma(t)$ is a straight

AMS (MOS) subject classifications (1970). Primary 42A18, 42A40.

¹ Partially supported by an NSF grant at the University of Wisconsin.

² Partially supported by an NSF grant at the University of Minnesota, GP-15832.

Copyright © American Mathematical Society 1974

line. Thus in (3) we take $\alpha_1 = 1$ and $\alpha_2 = \alpha > 1$. Clearly *m* is odd and $m(rx, r^{\alpha}y) = m(x, y), r > 0$. By using the method of steepest descents and integration by parts we obtain

THEOREM 2. m(x, y) is infinitely differentiable away from the line y=0. For $0 \le |y|/x^{\alpha} \le 1$,

$$m(x, y) = m_1(x, y) + m_2(x, y) + m_3(x, y),$$

where, if

$$\lambda = |y| \ x^{-\alpha} \quad \text{and} \quad \beta = (a-1)^{-1}$$

$$m_1(x, y) = \begin{cases} \sum_{j=1}^n A_j \lambda^{\beta/2+\eta_j} \exp(i\lambda^{-\beta}\nu_j), & y \ge 0, \\ 0, & y \le 0, \end{cases}$$

$$m_2(x, y) = \begin{cases} \sum_{j=1}^m B_j \lambda^{\beta/2+\rho_j} \exp(i\lambda^{-\beta}\xi_j), & y \le 0, \\ 0, & y \ge 0, \end{cases}$$

 $m_3(x, y)$ has continuous second order partial derivatives away from the origin. Here A_j and B_j are complex numbers $\eta_j \ge 0$, $\rho_j \ge 0$, and v_j and ξ_j are real.

We shall consider a multiplier of the form $n(x, y) = g(y/x^{\alpha})$ where

$$g(\lambda) = \begin{cases} \lambda^{\beta/2} \exp(i\lambda^{-\beta})\omega(\lambda), & \text{if } \lambda > 0, \\ 0, & \text{if } \lambda \le 0, \end{cases}$$

where ω is C^{∞} , has support in [-1, 1] and is identically 1 near $\lambda = 0$. Theorem 2 implies that m(x, y) is a finite sum of multipliers each of which may be treated in the same way as n(x, y). Set

$$g_z(\lambda) = \begin{cases} \lambda^{z\beta} \exp(i\lambda^{-\beta})\omega(\lambda), & \lambda \ge 0, \\ 0, & \lambda \le 0, \end{cases}$$

and $n_z(x, y) = g_z(y/x^{\alpha})$.

We wish to show

 $n_{1/2}$ is a bounded multiplier on L^p for $\frac{4}{3} .$

Clearly $n_{0+it}(x, y)$ is a bounded multiplier on L^2 (with norm uniformly bounded in t). Hence, in view of the interpolation theorem for analytic families of operators, to prove $n_{1/2}$ is a bounded multiplier on L^p , $\frac{4}{3} , it suffices to prove$

THEOREM 3. $n_{\sigma+it}$ is a bounded multiplier on L^p , $1 for <math>\sigma > 1$, with a bound that is independent of t.

Theorem 3 will in turn follow by arguments similar to Rivière [1], if one can prove the following

LEMMA. Let $\psi(r)$ be in $C^{\infty}[0, \infty)$ with support in $[\frac{1}{2}, 2]$, $\rho(x, y) = (x^{2^{\alpha}}+y^2)^{1/2^{\alpha}}$, and $\phi(x, y)=\psi(\rho(x, y))$. For δ positive and small set $l=\frac{1}{2}(1+1/\alpha)+\alpha$ and $k=(\alpha+1)/2$.

Then

(i)
$$\int_{R^2} (|x|^{2k} + |y|^{2l}) |(n_{\sigma+it}\phi)^{\check{}}(x, y)|^2 \, dx \, dy \leq C$$

and

(ii)
$$\int_{\mathbb{R}^2} (|x|^{2k} + |y|^{2l}) |(n_{\sigma+it}\phi h_{s,u})^{\check{}}(x,y)|^2 \, dx \, dy \leq C[\rho(s,u)]^2.$$

 $h_{s,u}(x, y) = e^{i(xs+yu)} - 1$. (* denotes inverse Fourier transform).

Lemma 2 is proved by (a) proving appropriate analogues of (i) and (ii) if k=m+it, m a nonnegative integer, l=1+it, and l=it, and then (b) using the Phragmén-Lindelöf theorems. Details will appear elsewhere.

References

1. N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.

2. E. M. Stein, *Some problems in harmonic analysis*, Proc. Internat. Congress Math. (Nice, 1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 173–190.

3. E. M. Stein and S. Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101-104. MR 42 #904.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

108