ON HILBERT TRANSFORMS ALONG CURVES

BY ALEXANDER NAGEL, ${ }^{1}$ NESTOR RIVIÈRE ${ }^{2}$ AND STEPHEN WAINGER ${ }^{1}$
Communicated by E. Stein, June 1, 1973
Let $\gamma(t),-\infty<t<\infty$, be a smooth curve in R^{n}. For f in $C_{0}^{\infty}\left(R^{n}\right)$ set

$$
\begin{equation*}
T f(x)=\lim _{\varepsilon \rightarrow \infty, N \rightarrow \infty} \int_{\varepsilon \leqq|t| \leqq N} \frac{f(x-\gamma(t))}{t} d t \tag{1}
\end{equation*}
$$

Tf is the Hilbert transform of f along the curve $\gamma(t)$. E. M. Stein [2] raised the following general question: For what values of p and what curves $\gamma(t)$ is Tf a bounded operator in L^{p} ? If $\gamma(t)$ is a straight line it is well known that T is bounded for $1<p<\infty$. Stein and Wainger [3] proved that the operator is bounded for $p=2$ if

$$
\gamma(t)=\left(|t|^{\alpha_{1}} \operatorname{sgn} t, \cdots,|t|^{\alpha_{n}} \operatorname{sgn} t\right), \quad \alpha_{i}>0
$$

Here we show that $T f$ is a bounded operator in L^{p} for some p other than 2 and some nontrivial, nonlinear γ 's. We prove

Theorem 1. Let $\gamma(t)=\left(|t|^{\alpha_{1}} \operatorname{sgn} t,|t|^{\alpha_{2}} \operatorname{sgn} t\right) \alpha_{1}>0, \alpha_{2}>0$. Then Tf is bounded in L^{p} for $\frac{4}{3}<p<4$.

Sketch of the proof. The transformation (1) may be expressed as a multiplier transformation. In our case,

$$
\begin{equation*}
(T f)^{\wedge}(x, y)=m(x, y) \hat{f}(x, y) \tag{2}
\end{equation*}
$$

where

$$
\text { (3) } m(x, y)=\lim _{\varepsilon \rightarrow \infty, N \rightarrow \infty} \int_{\varepsilon \leqq|t| \leqq N} \exp \left\{i|t|^{\alpha_{1}} \operatorname{sgn} t x+i|t|^{\alpha_{2}} \operatorname{sgn} t y\right\} \frac{d t}{t}
$$

(${ }^{\wedge}$ denotes Fourier transform).
By a change of variables we may assume $\alpha_{1}=1$ and $\alpha_{2} \geqq 1$. Furthermore we may assume $\alpha_{2}>1$, for otherwise we have the case that $\gamma(t)$ is a straight

[^0]line. Thus in (3) we take $\alpha_{1}=1$ and $\alpha_{2}=\alpha>1$. Clearly m is odd and $m\left(r x, r^{\alpha} y\right)=m(x, y), r>0$. By using the method of steepest descents and integration by parts we obtain

Theorem 2. $m(x, y)$ is infinitely differentiable away from the line $y=0$.
For $0 \leqq|y| \mid x^{\alpha} \leqq 1$,

$$
m(x, y)=m_{1}(x, y)+m_{2}(x, y)+m_{3}(x, y)
$$

where, if

$$
\begin{aligned}
& \lambda=|y| x^{-\alpha} \text { and } \beta=(a-1)^{-1} \\
& m_{1}(x, y)= \begin{cases}\sum_{j=1}^{n} A_{j} \lambda^{\beta / 2+\eta j} \exp \left(i \lambda^{-\beta} \boldsymbol{v}_{j}\right), & y \geqq 0, \\
0, & y \leqq 0,\end{cases} \\
& m_{2}(x, y)= \begin{cases}\sum_{j=1}^{m} B_{j} \lambda^{\beta / 2+\rho_{j}} \exp \left(i \lambda^{-\beta} \xi_{j}\right), & y \leqq 0, \\
0, & y \geqq 0,\end{cases}
\end{aligned}
$$

$m_{3}(x, y)$ has continuous second order partial derivatives away from the origin. Here A_{j} and B_{j} are complex numbers $\eta_{j} \geqq 0, \rho_{j} \geqq 0$, and v_{j} and ξ_{j} are real.

We shall consider a multiplier of the form $n(x, y)=g\left(y / x^{\alpha}\right)$ where

$$
g(\lambda)= \begin{cases}\lambda^{\beta / 2} \exp \left(i \lambda^{-\beta}\right) \omega(\lambda), & \text { if } \lambda>0 \\ 0, & \text { if } \lambda \leqq 0\end{cases}
$$

where ω is C^{∞}, has support in $[-1,1]$ and is identically 1 near $\lambda=0$. Theorem 2 implies that $m(x, y)$ is a finite sum of multipliers each of which may be treated in the same way as $n(x, y)$. Set

$$
g_{z}(\lambda)= \begin{cases}\lambda^{z \beta} \exp \left(i \lambda^{-\beta}\right) \omega(\lambda), & \lambda \geqq 0 \\ 0, & \lambda \leqq 0\end{cases}
$$

and $n_{z}(x, y)=g_{z}\left(y \mid x^{\alpha}\right)$.
We wish to show

$$
n_{1 / 2} \text { is a bounded multiplier on } L^{p} \text { for } \frac{4}{3}<p<4 .
$$

Clearly $n_{0+i t}(x, y)$ is a bounded multiplier on L^{2} (with norm uniformly bounded in t). Hence, in view of the interpolation theorem for analytic families of operators, to prove $n_{1 / 2}$ is a bounded multiplier on L^{p}, $\frac{4}{3}<p<4$, it suffices to prove

Theorem 3. $n_{\sigma+i t}$ is a bounded multiplier on $L^{p}, 1<p<\infty$ for $\sigma>1$, with a bound that is independent of t.

Theorem 3 will in turn follow by arguments similar to Rivière [1], if one can prove the following

Lemma. Let $\psi(r)$ be in $C^{\infty}[0, \infty)$ with support in $\left[\frac{1}{2}, 2\right], \rho(x, y)=$ $\left(x^{2 \alpha}+y^{2}\right)^{1 / 2^{\alpha}}$, and $\phi(x, y)=\psi(\rho(x, y))$. For δ positive and small set $l=$ $\frac{1}{2}(1+1 / \alpha)+\alpha$ and $k=(\alpha+1) / 2$.

Then

$$
\begin{equation*}
\int_{R^{2}}\left(|x|^{2 k}+|y|^{2 l}\right)\left|\left(n_{\sigma+i t} \phi\right)^{\vee}(x, y)\right|^{2} d x d y \leqq C \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R^{2}}\left(|x|^{2 k}+|y|^{2 l}\right)\left|\left(n_{\sigma+i t} \phi h_{s, u}\right)^{\vee}(x, y)\right|^{2} d x d y \leqq C[\rho(s, u)]^{2} . \tag{ii}
\end{equation*}
$$

$h_{s, u}(x, y)=e^{i(x s+y u)}-1$. (${ }^{2}$ denotes inverse Fourier transform).
Lemma 2 is proved by (a) proving appropriate analogues of (i) and (ii) if $k=m+i t, m$ a nonnegative integer, $l=1+i t$, and $l=i t$, and then (b) using the Phragmén-Lindelöf theorems. Details will appear elsewhere.

References

1. N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.
2. E. M. Stein, Some problems in harmonic analysis, Proc. Internat. Congress Math. (Nice, 1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 173-190.
3. E. M. Stein and S. Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101-104. MR 42 \#904.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

[^0]: AMS (MOS) subject classifications (1970). Primary 42A18, 42A40.
 ${ }^{1}$ Partially supported by an NSF grant at the University of Wisconsin.
 ${ }^{2}$ Partially supported by an NSF grant at the University of Minnesota, GP-15832.

