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ABSTRACT. In this note we study the a.e. convergence prop
erties of certain rearrangements of the Walsh-Fourier series, and 
maximal functions of the Hardy-Littlewood type that arise from 
these rearrangements. 

The rearrangements are defined as follows. Let rn be the «th Rademacher 
function. For 7V=1, 2, •• -, let aN be a permutation of the nonnegative 
integers such that aN(j)=j for all j^N. If 2N^n<2N+\ H=2JIO^2>' , 
where ^ = 0 or 1 if Org/^iV— 1, and eN=l, we define 

N 

ïn = I l K'jU). 

We also define <f>0=l and <£i=r0. 
If GN is the identity permutation, JV=1, 2, • • • , we recover the Walsh 

system. If aN(j)=N—j—l, 0^j^N—l9 {c/>n} is the Walsh-Kaczmarz 
system. (See [1], [8] and [12].) In general, the system {cf>n} is a rearrange
ment of the Walsh system within dyadic blocks of indices 2N^n<2N+1, 
7V = 1,2,---. 

We have the following result on the a.e. convergence of Fourier series 
with respect to {</>n}. For ƒ G L^O, 1), let Snf= 2£o & Jo/fo dt denote the 
nth partial sum of the Fourier series off with respect to {(f>n}9 and Mf= 

supjsjn. 
THEOREM 1. There are absolute constants C and C^ such that 
(a) | |u / / | | p ^CJ/H, , /eL»,2^/><oo. 
(b) m { M / > ^ C exp(-Cj/| | ƒ |L), 7>0, ƒ 6 1,°°. 

This implies the a.e. convergence of Snf to ƒ for ƒ e Lp, 2^/?<oo. 
If we restrict ourselves to a subclass of rearrangements, we obtain better 

a.e. convergence results. We say that the permutations {aN} satisfy the 
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"block condition" if for each N=l, 2, • • • , O^m^N— 1, there is an 
integer kNfm, with 0^kNm^N—m—l9 such that 

(1) {OJV(0), • • , aN(m)} = {kN>m9 kN>m + 1, • • • , kNtTn + m}. 

THEOREM 2. Lf{aN} satisfies the block condition, then there are absolute 
constants C and Cv such that 

(a) \\mf\\^Cv\\f\\V9feL*9\<p<2. 
(b) WMfW^Cfi I ƒ l(log+|/1)3 dx+CJe L(log+ Lf. 
(c) #7o I/I0og+ | / | )2 log+log+l/l <fc<oo, rtew Snf converges tofa.e. 

The absolute constants C and Cp in the above theorems are independent 
of the permutations {crN}. 

The proofs of these theorems involve a modification of the Carleson-
Hunt technique (see [3], [6] and [7]), and LP boundedness of certain 
maximal functions of the Hardy-Littlewood type. We will only give the 
proofs of the estimates of the maximal functions. Complete proofs of these 
theorems are contained in [11]. They will appear elsewhere in the Vilenkin 
group setting in a joint paper with J. Gosselin [5]. 

To prove Theorem 2, we will show that the maximal operator 

ƒ - * ƒ * = sup E(\f\ | r (0), • • , r im)) 
0^m<N;N * * 

is of weak type (p, p) (p> 1). Note that for the case where aN is the identity 
permutation, N=l, 2, • • • , this operator is just the usual dyadic Hardy-
Littlewood operator. 

LEMMA 1. If {oN} satisfies the block condition, then for 1 < / ? < O O , 

m{f*>y}<Cly-A\fY>dx, 
Jo 

wherey>0,fe L», and C^p\{p—\). 

In view of (1), this is a corollary of 

LEMMA 2. For 1 <p< oo, 

mlsup £( | ƒ | \rn9 • • • , rn+m) > y) g Ctf* \ \ f |» dx9 
\m,n } Jo 

where y>09fe LP9 and Cp^pl(p—l). 

PROOF. We observe that for any L1 function g and integers n, m^O 

E(g | rw> • ' * > rn+m) = E{E{g | r0, • • • , rn+m) | rn9 • • • , rn+m) 

= E{E{g | r0, • • • , rn+m) \ rn9 rn+l9 • • •). 
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The last inequality follows from the independence of the Borel fields 
^(>o, * ' • , r-n+m) and ^*(rw+w+1, rn+m+2, • • •). (See, for example, [4, p. 
285].) Therefore 

m ! s u p E ( | / | | r w , - - - , r w + m ) > y\ 

^ m sup E(sup E(\f | | r0, • • •, rk) | rn, fn+1, • • • J > y\ 

^j ; - î , rsup |£( l / l | r 0 , - - - ) r f c ) | I >dx 
Jo k 

ÛCly-"f1\f\"dx, 
Jo 

where C^pl(p-l). Here we have used Doob's inequality [10, p. 91]. 
This completes the proof of Lemma 2. 

REMARKS. It is interesting to note that the mapping 

/ - > s u p E ( | / | I rw, • • • , rw+nl) 
m,n 

is not of weak type (1, 1). This accounts for the fact that the argument we 
use only enables us to establish the a.e. convergence result for the rearranged 
series for functions in the class L(log+ L)2 log+ log+ L, whereas, for the 
Walsh-Fourier series, a similar argument yields the same result for 
functions in the class £(log+ L)log+ log+ L. (See [9].) 

The following is an example of K. H. Moon. We will construct a sequence 
of functions {gk}, 0^gk e L1, such that 

sup E(gk | rn9 • • • , rn+m) > - } ; > - , k = 1, 2, • • • , 

Igjkl dx-> 0 as /c-> oo. 

For each fc=l, 2, • • • , y = 0 , 1, • • • , let 

Ala = Vfci ^ rkj+l = ' ' ' = ^'+fc_i = 1}. 

Since, for each fc, {̂ 4&J}JL0 is independent, and 
00 00 

j=0 i=o 

the Borel-Cantelli Lemma implies that there exists Jk such that 

ml 

m 

but 

'(H"")aî-
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For k=l, 2, • • • , define 

gk(x) = 2fcJ* if x e (0, 2-*-fcJ*), 

= 0 otherwise. 
Thus we have 

m sup E(gk | rw, • • • , rw+m) > - ^ m( U 4 M ) ^ " , 
\m,n 2) \ j=0 J 2 

but 

\gk\ dx = 2~fc->0 asfc->oo. 

This shows that/->supWtW E(\f\ | rw, • • • , rw+m) is not of weak type (1, 1). 
If we relaxed the block condition on the permutations {oN}, f->f* 

would not be of weak type (p,p) for any j ^ l . We consider the operator 

Let 

Then 

ƒ -> sup £( | ƒ | | r0, • • • , r,_l9 r,+1, • • • , rm). 

gw(x) = l if x e (O,*-*-1), 

= 0 otherwise. 

sup £(gn | r0, • • • , r^l9 r m , • • • , rw)(x) 

= - if x G (0, 2-71-1) u Û (2~'> 2" ' + 2-71-1), 
2 j=i 

= 0 otherwise. 
Therefore, 

ml sup £(gn | r0, • • • , r,_!, r m , • • • , rm) > - I g> (n + 1)2" - w - 1 

However, ƒ* | g j p rfx=2~n_1. This verifies our statement. 
To prove Theorem 1, it is sufficient to have the LP boundedness (p^2) 

of a weaker operator 

ƒ ->ƒ** = sup E(\fN\ | r (0>, • • •, ra ( m )) , 
0^.m<N,N 

where ƒ „ = £ ( ƒ |r0, • • • , rw)-JS:</|r0, • • • , r ^ ) . Note that ƒ * * ^ / * . 

LEMMA 3. For 2:g/?^oo, 
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PROOF. For/?=2, 

f 'I ƒ **|2 dx^fC sup \E(\fN\ | r.,(0), • • •, r^ (m)) |2 d* 

^ 4 § fV iV |2dx = 4 f | / | 2 J x , 
JV=1 «/0 JO 

by Doob's inequality [10, p. 91]. Forp=oo, 

ll/**IL ^ !I/*IL ^ 11/11.. 
These norm inequalities together with the Riesz convexity theorem [2] 
imply our lemma. 
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